use ropey::{iter::Chunks, RopeSlice}; use unicode_segmentation::{GraphemeCursor, GraphemeIncomplete}; use unicode_width::UnicodeWidthStr; pub fn grapheme_width(g: &str) -> usize { if g.as_bytes()[0] <= 127 { // Fast-path ascii. // Point 1: theoretically, ascii control characters should have zero // width, but in our case we actually want them to have width: if they // show up in text, we want to treat them as textual elements that can // be editied. So we can get away with making all ascii single width // here. // Point 2: we're only examining the first codepoint here, which means // we're ignoring graphemes formed with combining characters. However, // if it starts with ascii, it's going to be a single-width grapeheme // regardless, so, again, we can get away with that here. // Point 3: we're only examining the first _byte_. But for utf8, when // checking for ascii range values only, that works. 1 } else { // We use max(1) here because all grapeheme clusters--even illformed // ones--should have at least some width so they can be edited // properly. UnicodeWidthStr::width(g).max(1) } } pub fn nth_prev_grapheme_boundary(slice: &RopeSlice, byte_idx: usize, n: usize) -> usize { // TODO: implement this more efficiently. This has to do a lot of // re-scanning of rope chunks. Probably move the main implementation here, // and have prev_grapheme_boundary call this instead. let mut byte_idx = byte_idx; for _ in 0..n { byte_idx = prev_grapheme_boundary(slice, byte_idx); } byte_idx } /// Finds the previous grapheme boundary before the given char position. pub fn prev_grapheme_boundary(slice: &RopeSlice, byte_idx: usize) -> usize { // Bounds check debug_assert!(byte_idx <= slice.len()); // Get the chunk with our byte index in it. let (mut chunk, mut chunk_byte_idx) = slice.chunk(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len(), true); // Find the previous grapheme cluster boundary. loop { match gc.prev_boundary(chunk, chunk_byte_idx) { Ok(None) => return 0, Ok(Some(n)) => return n, Err(GraphemeIncomplete::PrevChunk) => { let (a, b) = slice.chunk(chunk_byte_idx - 1); chunk = a; chunk_byte_idx = b; } Err(GraphemeIncomplete::PreContext(n)) => { let ctx_chunk = slice.chunk(n - 1).0; gc.provide_context(ctx_chunk, n - ctx_chunk.len()); } _ => unreachable!(), } } } pub fn nth_next_grapheme_boundary(slice: &RopeSlice, byte_idx: usize, n: usize) -> usize { // TODO: implement this more efficiently. This has to do a lot of // re-scanning of rope chunks. Probably move the main implementation here, // and have next_grapheme_boundary call this instead. let mut byte_idx = byte_idx; for _ in 0..n { byte_idx = next_grapheme_boundary(slice, byte_idx); } byte_idx } /// Finds the next grapheme boundary after the given char position. pub fn next_grapheme_boundary(slice: &RopeSlice, byte_idx: usize) -> usize { // Bounds check debug_assert!(byte_idx <= slice.len()); // Get the chunk with our byte index in it. let (mut chunk, mut chunk_byte_idx) = slice.chunk(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len(), true); // Find the next grapheme cluster boundary. loop { match gc.next_boundary(chunk, chunk_byte_idx) { Ok(None) => return slice.len(), Ok(Some(n)) => return n, Err(GraphemeIncomplete::NextChunk) => { chunk_byte_idx += chunk.len(); let (a, _) = slice.chunk(chunk_byte_idx); chunk = a; } Err(GraphemeIncomplete::PreContext(n)) => { let ctx_chunk = slice.chunk(n - 1).0; gc.provide_context(ctx_chunk, n - ctx_chunk.len()); } _ => unreachable!(), } } } /// Returns whether the given char position is a grapheme boundary. pub fn is_grapheme_boundary(slice: &RopeSlice, byte_idx: usize) -> bool { // Bounds check debug_assert!(byte_idx <= slice.len()); // Get the chunk with our byte index in it. let (chunk, chunk_byte_idx) = slice.chunk(byte_idx); // Set up the grapheme cursor. let mut gc = GraphemeCursor::new(byte_idx, slice.len(), true); // Determine if the given position is a grapheme cluster boundary. loop { match gc.is_boundary(chunk, chunk_byte_idx) { Ok(n) => return n, Err(GraphemeIncomplete::PreContext(n)) => { let (ctx_chunk, ctx_byte_start) = slice.chunk(n - 1); gc.provide_context(ctx_chunk, ctx_byte_start); } _ => unreachable!(), } } } /// An iterator over the graphemes of a RopeSlice. #[derive(Clone)] pub struct RopeGraphemes<'a> { text: RopeSlice<'a>, chunks: Chunks<'a>, cur_chunk: &'a str, cur_chunk_start: usize, cursor: GraphemeCursor, } impl<'a> RopeGraphemes<'a> { pub fn new<'b>(slice: &RopeSlice<'b>) -> RopeGraphemes<'b> { let mut chunks = slice.chunks(); let first_chunk = chunks.next().unwrap_or(""); RopeGraphemes { text: *slice, chunks: chunks, cur_chunk: first_chunk, cur_chunk_start: 0, cursor: GraphemeCursor::new(0, slice.len(), true), } } } impl<'a> Iterator for RopeGraphemes<'a> { type Item = std::borrow::Cow<'a, str>; fn next(&mut self) -> Option> { let a = self.cursor.cur_cursor(); let b; loop { match self .cursor .next_boundary(self.cur_chunk, self.cur_chunk_start) { Ok(None) => { return None; } Ok(Some(n)) => { b = n; break; } Err(GraphemeIncomplete::NextChunk) => { self.cur_chunk_start += self.cur_chunk.len(); self.cur_chunk = self.chunks.next().unwrap_or(""); } Err(GraphemeIncomplete::PreContext(idx)) => { let (chunk, byte_idx) = self.text.chunk(idx.saturating_sub(1)); self.cursor.provide_context(chunk, byte_idx); } _ => unreachable!(), } } if a >= self.cur_chunk_start && b <= (self.cur_chunk_start + self.cur_chunk.len()) { let a_internal = a - self.cur_chunk_start; let b_internal = b - self.cur_chunk_start; Some(std::borrow::Cow::Borrowed( &self.cur_chunk[a_internal..b_internal], )) } else { Some(self.text.slice(a..b).into()) } } }