Major performance improvements to transfer function formula estimation.
It also now ensures that the end meets exactly where it does in the LUT.
This commit is contained in:
parent
ab91aee328
commit
1dae8c9fc1
40
Cargo.lock
generated
40
Cargo.lock
generated
|
@ -211,7 +211,6 @@ dependencies = [
|
|||
"clap",
|
||||
"colorbox",
|
||||
"exr",
|
||||
"simplers_optimization",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -229,15 +228,6 @@ dependencies = [
|
|||
"getrandom",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num-traits"
|
||||
version = "0.2.14"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "9a64b1ec5cda2586e284722486d802acf1f7dbdc623e2bfc57e65ca1cd099290"
|
||||
dependencies = [
|
||||
"autocfg",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num_cpus"
|
||||
version = "1.13.1"
|
||||
|
@ -248,15 +238,6 @@ dependencies = [
|
|||
"libc",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ordered-float"
|
||||
version = "2.10.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7940cf2ca942593318d07fcf2596cdca60a85c9e7fab408a5e21a4f9dcd40d87"
|
||||
dependencies = [
|
||||
"num-traits",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "os_str_bytes"
|
||||
version = "6.0.0"
|
||||
|
@ -286,16 +267,6 @@ dependencies = [
|
|||
"syn",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "priority-queue"
|
||||
version = "1.2.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "00ba480ac08d3cfc40dea10fd466fd2c14dee3ea6fc7873bc4079eda2727caf0"
|
||||
dependencies = [
|
||||
"autocfg",
|
||||
"indexmap",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro2"
|
||||
version = "1.0.37"
|
||||
|
@ -320,17 +291,6 @@ version = "1.1.0"
|
|||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d29ab0c6d3fc0ee92fe66e2d99f700eab17a8d57d1c1d3b748380fb20baa78cd"
|
||||
|
||||
[[package]]
|
||||
name = "simplers_optimization"
|
||||
version = "0.4.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "2cd97912bb2a16575a2c632c2a2f2bac8a527827ceaddd73e0ccc12d86adec43"
|
||||
dependencies = [
|
||||
"num-traits",
|
||||
"ordered-float",
|
||||
"priority-queue",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "smallvec"
|
||||
version = "1.8.0"
|
||||
|
|
|
@ -7,4 +7,3 @@ edition = "2021"
|
|||
exr = "1.4.1"
|
||||
clap = { version = "3.1.8", default-features = false, features=["std"] }
|
||||
colorbox = { git = "https://github.com/cessen/colorbox", branch = "master" }
|
||||
simplers_optimization = "0.4.3"
|
||||
|
|
|
@ -38,6 +38,33 @@ pub fn log_to_linear(x: f64, line_offset: f64, slope: f64, log_offset: f64, base
|
|||
}
|
||||
}
|
||||
|
||||
// Find the `log_offset` needed to put x=end at y=1.0 in the linear_to_log function.
|
||||
pub fn find_log_offset_for_end(end: f64, line_offset: f64, slope: f64, base: f64) -> f64 {
|
||||
let mut offset_up = 10.0;
|
||||
let mut offset_down = -10.0;
|
||||
|
||||
for _ in 0..54 {
|
||||
let log_offset = (offset_up + offset_down) * 0.5;
|
||||
if linear_to_log(end, line_offset, slope, log_offset, base) > 1.0 {
|
||||
offset_up = log_offset;
|
||||
} else {
|
||||
offset_down = log_offset;
|
||||
}
|
||||
}
|
||||
|
||||
offset_up
|
||||
}
|
||||
|
||||
// Transition point between log and linear.
|
||||
//
|
||||
// Returned as (linear, non-linear).
|
||||
pub fn transition_point(line_offset: f64, slope: f64, log_offset: f64, base: f64) -> (f64, f64) {
|
||||
let transition = 1.0 / (slope * base.ln());
|
||||
let k = transition + log_offset;
|
||||
|
||||
(k, (k - line_offset) * slope)
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------
|
||||
|
||||
/// Generates Rust code for a linear-to-log transfer function with the
|
||||
|
|
14
src/main.rs
14
src/main.rs
|
@ -62,8 +62,18 @@ fn main() {
|
|||
image
|
||||
};
|
||||
|
||||
// Build the LUT.
|
||||
// Fetch the transfer function LUT.
|
||||
let gray = &mut input_image[test_image::gray_idx(0)..test_image::gray_idx(GRADIENT_LEN)];
|
||||
|
||||
// Attempt to find an analytic log-linear function that matches
|
||||
// the transfer function.
|
||||
let full_lut: Vec<f32> = gray
|
||||
.iter()
|
||||
.map(|rgb| ((rgb[0] as f64 + rgb[1] as f64 + rgb[2] as f64) / 3.0) as f32)
|
||||
.collect();
|
||||
optimize_log::find_parameters(&full_lut);
|
||||
|
||||
// Build the LUT for export.
|
||||
let mut prev = gray[0];
|
||||
for rgb in gray.iter_mut() {
|
||||
// Ensure montonicity.
|
||||
|
@ -89,8 +99,6 @@ fn main() {
|
|||
gray_b.push(rgb[2]);
|
||||
}
|
||||
|
||||
optimize_log::find_parameters(&gray_r);
|
||||
|
||||
// Write the LUT.
|
||||
colorbox::formats::cube::write_1d(
|
||||
BufWriter::new(File::create("test.cube").unwrap()),
|
||||
|
|
|
@ -5,41 +5,48 @@ pub fn find_parameters(lut: &[f32]) {
|
|||
|
||||
// Compute the stuff that we can without estimation.
|
||||
let offset = lut[0] as f64;
|
||||
let slope = lin_norm / (lut[1] as f64 - lut[0] as f64);
|
||||
let end = lut[lut.len() - 1] as f64;
|
||||
let slope = {
|
||||
// We take the difference of points near zero for increased accuracy.
|
||||
let (i, _) = lut.iter().enumerate().find(|(_, y)| **y > 0.0).unwrap();
|
||||
lin_norm / (lut[i] as f64 - lut[i - 1] as f64)
|
||||
};
|
||||
|
||||
// Select a range of points from the lookup table to fit to.
|
||||
let idxs: Vec<_> = (0..lut.len()).step_by(lut.len() / 256).collect();
|
||||
let coords: Vec<(f64, f64)> = idxs
|
||||
// Collect LUT points as (x, y) coordinates.
|
||||
let coords: Vec<(f64, f64)> = lut
|
||||
.iter()
|
||||
.map(|i| (*i as f64 * lin_norm, lut[*i] as f64))
|
||||
.enumerate()
|
||||
.step_by(lut.len() / 256)
|
||||
.map(|(i, y)| (i as f64 * lin_norm, *y as f64))
|
||||
.collect();
|
||||
|
||||
// Do the fitting.
|
||||
let f = |v: &[f64]| {
|
||||
let mut avg_sqr_err = 0.0f64;
|
||||
for (x, y) in coords.iter().copied() {
|
||||
let e = (log_to_lin(x, offset, slope, v[0], v[1]) - y).abs() / y.abs();
|
||||
avg_sqr_err += e * e;
|
||||
}
|
||||
let last_y = lut[lut.len() - 1] as f64;
|
||||
let e = (log_to_lin(1.0, offset, slope, v[0], v[1]) - last_y).abs() / last_y.abs();
|
||||
avg_sqr_err += e * e;
|
||||
avg_sqr_err
|
||||
};
|
||||
let input_interval = vec![(-0.2, 0.2), (1.1, 1000.0)];
|
||||
let (_, params) = simplers_optimization::Optimizer::minimize(&f, &input_interval, 1000000);
|
||||
let base = optimize(
|
||||
|v: f64| {
|
||||
let log_offset = crate::linear_log::find_log_offset_for_end(end, offset, slope, v);
|
||||
let mut sqr_err = 0.0f64;
|
||||
for (x, y) in coords.iter().copied() {
|
||||
let e = (log_to_lin(x, offset, slope, log_offset, v) - y).abs() / y.abs();
|
||||
sqr_err += e * e;
|
||||
}
|
||||
sqr_err
|
||||
},
|
||||
[1.5, 10000000.0],
|
||||
100,
|
||||
);
|
||||
let log_offset = crate::linear_log::find_log_offset_for_end(end, offset, slope, base);
|
||||
let transition = crate::linear_log::transition_point(offset, slope, log_offset, base);
|
||||
|
||||
// Calculate the error of our model.
|
||||
let mut max_err = 0.0f64;
|
||||
let mut avg_err = 0.0f64;
|
||||
let mut avg_samples = 0usize;
|
||||
for (i, y) in lut.iter().map(|y| *y as f64).enumerate() {
|
||||
// We only record error for values that aren't crazy tiny, since
|
||||
// their relative error isn't representative.
|
||||
if y.abs() > 0.0001 {
|
||||
let x = i as f64 * lin_norm;
|
||||
let e = (log_to_lin(x, offset, slope, params[0], params[1]) - y).abs()
|
||||
/ y.abs();
|
||||
for (x, y) in coords.iter().copied() {
|
||||
// Only record error for the log part of the curve because we
|
||||
// computed the linear segment's slope and offset analytically,
|
||||
// and the relative error of points very near zero isn't reliable.
|
||||
if y > transition.0 {
|
||||
let e = (log_to_lin(x, offset, slope, log_offset, base) - y).abs() / y.abs();
|
||||
max_err = max_err.max(e);
|
||||
avg_err += e;
|
||||
avg_samples += 1;
|
||||
|
@ -47,11 +54,57 @@ pub fn find_parameters(lut: &[f32]) {
|
|||
}
|
||||
avg_err /= avg_samples as f64;
|
||||
|
||||
println!("Max Err: {:.4}%\nAvg Err: {:.4}%", max_err * 100.0, avg_err * 100.0);
|
||||
println!(
|
||||
"Max Err: {:.4}%\nAvg Err: {:.4}%",
|
||||
max_err * 100.0,
|
||||
avg_err * 100.0
|
||||
);
|
||||
|
||||
// dbg!(offset, log_offset, slope, base, end);
|
||||
|
||||
println!(
|
||||
"{}{}",
|
||||
crate::linear_log::generate_linear_to_log(offset, slope, params[0], params[1],),
|
||||
crate::linear_log::generate_log_to_linear(offset, slope, params[0], params[1],),
|
||||
crate::linear_log::generate_linear_to_log(offset, slope, log_offset, base),
|
||||
crate::linear_log::generate_log_to_linear(offset, slope, log_offset, base),
|
||||
);
|
||||
}
|
||||
|
||||
/// This finds the minimum of functions with only one minimum (i.e. has
|
||||
/// no local minimums other than the global one). It will not work
|
||||
/// for functions that don't meet that criteria.
|
||||
///
|
||||
/// It works by progressively narrowing the search range by:
|
||||
/// 1. Splitting the range into four equal segments.
|
||||
/// 2. Checking the slope of each segment.
|
||||
/// 3. Narrowing the range to the two adjecent segments where
|
||||
/// there is a switch from negative to positive slope.
|
||||
fn optimize<F: Fn(f64) -> f64>(f: F, range: [f64; 2], iterations: usize) -> f64 {
|
||||
let mut range = range;
|
||||
|
||||
for _ in 0..iterations {
|
||||
const SEG_POINTS: usize = 5;
|
||||
let point = |xi| {
|
||||
let n = xi as f64 / (SEG_POINTS - 1) as f64;
|
||||
(range[0] * (1.0 - n)) + (range[1] * n)
|
||||
};
|
||||
let mut last_xi = 0;
|
||||
for i in 0..(SEG_POINTS - 1) {
|
||||
last_xi = i;
|
||||
let y1 = f(point(i));
|
||||
let y2 = f(point(i + 1));
|
||||
if (y2 - y1) >= 0.0 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
let (r1, r2) = if last_xi == 0 {
|
||||
(point(0), point(1))
|
||||
} else if last_xi == (SEG_POINTS - 1) {
|
||||
(point(SEG_POINTS - 2), point(SEG_POINTS - 1))
|
||||
} else {
|
||||
(point(last_xi - 1), point(last_xi + 1))
|
||||
};
|
||||
range = [r1, r2];
|
||||
}
|
||||
|
||||
(range[0] + range[1]) * 0.5
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user