Some cleanup and improvements to the trifloat sub-crate.

This commit is contained in:
Nathan Vegdahl 2019-07-07 16:27:44 +09:00
parent e31ec6eb4e
commit 103775f0e9
3 changed files with 200 additions and 117 deletions

View File

@ -1,4 +1,34 @@
//! Functions for storing triplets of floating point values in a
//! shared-exponent format.
//!
//! The motivating use-case for this is compactly storing HDR RGB colors. But
//! it may be useful for other things as well.
pub mod signed48;
/// This crate provides types and functions for storing triplets of floating
/// point values in a shared-exponent format.
pub mod unsigned32;
//===========================================================================
// Some shared functions used by the other modules in this crate.
/// Calculates 2.0^exp using IEEE bit fiddling.
///
/// Only works for integer exponents in the range [-126, 127]
/// due to IEEE 32-bit float limits.
#[inline(always)]
fn fiddle_exp2(exp: i32) -> f32 {
use std::f32;
f32::from_bits(((exp + 127) as u32) << 23)
}
/// Calculates a floor(log2(n)) using IEEE bit fiddling.
///
/// Because of IEEE floating point format, infinity and NaN
/// floating point values return 128, and subnormal numbers always
/// return -127. These particular behaviors are not, of course,
/// mathemetically correct, but are actually desireable for the
/// calculations in this library.
#[inline(always)]
fn fiddle_log2(n: f32) -> i32 {
use std::f32;
((f32::to_bits(n) >> 23) & 0b1111_1111) as i32 - 127
}

View File

@ -1,57 +1,59 @@
//! Encoding/decoding for a 48-bit shared-exponent representation of three
//! signed floating point numbers.
//! Encoding/decoding for signed 48-bit trifloat numbers.
//!
//! This is useful for e.g. compactly storing HDR colors. The encoding
//! uses 14 bits of mantissa per number (including the sign bit for each) and 6
//! bits for the shared exponent. The bit layout is [mantissa 1, mantissa 2,
//! mantissa 3, exponent]. The exponent is stored as an unsigned integer with
//! a bias of 32. The mantissas are stored as a single leading sign bit and 13
//! bits of unsigned integer.
//! The encoding uses 13 bits of mantissa and 1 sign bit per number, and 6
//! bits for the shared exponent. The bit layout is: [sign 1, mantissa 1,
//! sign 2, mantissa 2, sign 3, mantissa 3, exponent]. The exponent is stored
//! as an unsigned integer with a bias of 25.
//!
//! The largest representable number is ?, and the smallest
//! representable positive number is ?.
//! The largest representable number is `2^38 - 2^25`, and the smallest
//! representable positive number is `2^-38`.
//!
//! Since the exponent is shared between the three values, the precision
//! of all three values depends on the largest (in absolute value) of the
//! three. All integers in the range [-8191, 8191] can be represented exactly
//! in the largest value.
//! Since the exponent is shared between all three values, the precision
//! of all three values depends on the largest (in magnitude) of the three.
//! All integers in the range `[-8192, 8192]` can be represented exactly in the
//! largest value.
use crate::{fiddle_exp2, fiddle_log2};
/// Largest representable number.
pub const MAX: f32 = 35_180_077_121_536.0;
pub const MAX: f32 = 274_844_352_512.0;
/// Smallest representable non-zero number.
pub const MIN_POSITIVE: f32 = 0.000_000_000_465_661_287;
/// Smallest representable number.
///
/// Note this is not the smallest _magnitude_ number. This is a negative
/// number of large magnitude.
pub const MIN: f32 = -274_844_352_512.0;
pub const MIN: f32 = -35_180_077_121_536.0;
/// Smallest representable positive number.
///
/// This is the number with the smallest possible magnitude (aside from zero).
pub const MIN_POSITIVE: f32 = 0.000_000_000_003_637_978_807_091_713;
/// Difference between 1.0 and the next largest representable number.
pub const EPSILON: f32 = 1.0 / 4096.0;
const EXP_BIAS: i32 = 31 - 13;
const EXP_BIAS: i32 = 25;
const MIN_EXP: i32 = 0 - EXP_BIAS;
const MAX_EXP: i32 = 63 - EXP_BIAS;
/// Encodes three floating point values into a 48-bit trifloat format.
/// Encodes three floating point values into a signed 48-bit trifloat.
///
/// Note that even though the return value is a u64, only the lower 48
/// bits are used.
/// Input floats that are larger than `MAX` or smaller than `MIN` will saturate
/// to `MAX` and `MIN` respectively, including +/- infinity. Values are
/// converted to trifloat precision by rounding.
///
/// Floats that are larger than the max representable value in trifloat
/// will saturate. Values are converted to trifloat by rounding, so the
/// max error introduced by this function is epsilon / 2.
/// Only the lower 48 bits of the return value are used. The highest 16 bits
/// will all be zero and can be safely discarded.
///
/// Warning: NaN's are _not_ supported by the trifloat
/// format. There are debug-only assertions in place to catch such
/// values in the input floats. Infinity is also not supported in the
/// format, but will simply saturate to the largest-magnitude representable
/// value.
/// Warning: NaN's are _not_ supported by the trifloat format. There are
/// debug-only assertions in place to catch such values in the input floats.
#[inline]
pub fn encode(floats: (f32, f32, f32)) -> u64 {
debug_assert!(
!floats.0.is_nan() && !floats.1.is_nan() && !floats.2.is_nan(),
"trifloat::s48::encode(): encoding to signed 48-bit tri-floats only works correctly for \
non-NaN numbers, but the numbers passed were: ({}, \
{}, {})",
"trifloat::signed48::encode(): encoding to signed tri-floats only \
works correctly for non-NaN numbers, but the numbers passed were: \
({}, {}, {})",
floats.0,
floats.1,
floats.2
@ -79,7 +81,7 @@ pub fn encode(floats: (f32, f32, f32)) -> u64 {
// Edge-case: make sure rounding pushes the largest value up
// appropriately if needed.
if (largest_value * inv_multiplier).abs() + 0.5 >= 8191.0 {
if (largest_value * inv_multiplier).abs() + 0.5 >= 8192.0 {
exponent = (exponent + 1).min(MAX_EXP);
inv_multiplier = fiddle_exp2(-exponent + 13);
}
@ -99,52 +101,33 @@ pub fn encode(floats: (f32, f32, f32)) -> u64 {
(x_sign << 47) | (x << 34) | (y_sign << 33) | (y << 20) | (z_sign << 19) | (z << 6) | e
}
/// Decodes a 48-bit trifloat into three full floating point numbers.
/// Decodes a signed 48-bit trifloat into three full floating point numbers.
///
/// This operation is lossless and cannot fail.
/// This operation is lossless and cannot fail. Only the lower 48 bits of the
/// input value are used--the upper 16 bits can safely be anything and are
/// ignored.
#[inline]
pub fn decode(trifloat: u64) -> (f32, f32, f32) {
// Unpack values.
let x_sign = (trifloat >> 47) as u32;
let x = (trifloat >> 34) & 0b111_11111_11111;
let y_sign = ((trifloat >> 33) & 1) as u32;
let y = (trifloat >> 20) & 0b111_11111_11111;
let z_sign = ((trifloat >> 19) & 1) as u32;
let z = (trifloat >> 6) & 0b111_11111_11111;
let x_sign = ((trifloat >> 16) & 0x8000_0000) as u32;
let y_sign = ((trifloat >> 2) & 0x8000_0000) as u32;
let z_sign = ((trifloat << 12) & 0x8000_0000) as u32;
let e = trifloat & 0b111_111;
let multiplier = fiddle_exp2(e as i32 - EXP_BIAS - 13);
(
f32::from_bits((x as f32 * multiplier).to_bits() | (x_sign << 31)),
f32::from_bits((y as f32 * multiplier).to_bits() | (y_sign << 31)),
f32::from_bits((z as f32 * multiplier).to_bits() | (z_sign << 31)),
f32::from_bits((x as f32 * multiplier).to_bits() | x_sign),
f32::from_bits((y as f32 * multiplier).to_bits() | y_sign),
f32::from_bits((z as f32 * multiplier).to_bits() | z_sign),
)
}
/// Calculates 2.0^exp using IEEE bit fiddling.
///
/// Only works for integer exponents in the range [-126, 127]
/// due to IEEE 32-bit float limits.
#[inline(always)]
fn fiddle_exp2(exp: i32) -> f32 {
use std::f32;
f32::from_bits(((exp + 127) as u32) << 23)
}
/// Calculates a floor(log2(n)) using IEEE bit fiddling.
///
/// Because of IEEE floating point format, infinity and NaN
/// floating point values return 128, and subnormal numbers always
/// return -127. These particular behaviors are not, of course,
/// mathemetically correct, but are actually desireable for the
/// calculations in this library.
#[inline(always)]
fn fiddle_log2(n: f32) -> i32 {
use std::f32;
((f32::to_bits(n) >> 23) & 0b1111_1111) as i32 - 127
}
#[cfg(test)]
mod tests {
use super::*;
@ -170,6 +153,27 @@ mod tests {
assert_eq!(round_trip(fs), fs);
}
#[test]
fn signs() {
let fs1 = (1.0f32, 1.0f32, 1.0f32);
let fs2 = (1.0f32, 1.0f32, -1.0f32);
let fs3 = (1.0f32, -1.0f32, 1.0f32);
let fs4 = (1.0f32, -1.0f32, -1.0f32);
let fs5 = (-1.0f32, 1.0f32, 1.0f32);
let fs6 = (-1.0f32, 1.0f32, -1.0f32);
let fs7 = (-1.0f32, -1.0f32, 1.0f32);
let fs8 = (-1.0f32, -1.0f32, -1.0f32);
assert_eq!(fs1, round_trip(fs1));
assert_eq!(fs2, round_trip(fs2));
assert_eq!(fs3, round_trip(fs3));
assert_eq!(fs4, round_trip(fs4));
assert_eq!(fs5, round_trip(fs5));
assert_eq!(fs6, round_trip(fs6));
assert_eq!(fs7, round_trip(fs7));
assert_eq!(fs8, round_trip(fs8));
}
#[test]
fn accuracy() {
let mut n = 1.0;
@ -182,7 +186,7 @@ mod tests {
#[test]
fn integers() {
for n in 0..=512 {
for n in -8192i32..=8192i32 {
let (x, _, _) = round_trip((n as f32, 0.0, 0.0));
assert_eq!(n as f32, x);
}
@ -248,9 +252,9 @@ mod tests {
let fs = (MIN_POSITIVE, MIN_POSITIVE * 0.5, MIN_POSITIVE * 0.49);
let fsn = (-MIN_POSITIVE, -MIN_POSITIVE * 0.5, -MIN_POSITIVE * 0.49);
assert_eq!(decode(0x600100000), (MIN_POSITIVE, -MIN_POSITIVE, 0.0));
assert_eq!(round_trip(fs), (MIN_POSITIVE, MIN_POSITIVE, 0.0));
assert_eq!(round_trip(fsn), (-MIN_POSITIVE, -MIN_POSITIVE, -0.0));
assert_eq!(decode(0x600100000), (MIN_POSITIVE, -MIN_POSITIVE, 0.0));
}
#[test]
@ -259,4 +263,37 @@ mod tests {
assert_eq!(encode(fs), 0x200000000);
assert_eq!(round_trip(fs), (0.0, -0.0, 0.0));
}
#[test]
fn garbage_upper_bits_decode() {
let fs1 = (4.0, -623.53, 12.3);
let fs2 = (-63456254.2, 5235423.53, 54353.3);
let fs3 = (-0.000000634, 0.00000000005, 0.00000000892);
let n1 = encode(fs1);
let n2 = encode(fs2);
let n3 = encode(fs3);
assert_eq!(decode(n1), decode(n1 | 0xffff_0000_0000_0000));
assert_eq!(decode(n2), decode(n2 | 0xffff_0000_0000_0000));
assert_eq!(decode(n3), decode(n3 | 0xffff_0000_0000_0000));
}
#[test]
#[should_panic]
fn nans_01() {
encode((std::f32::NAN, 1.0, -1.0));
}
#[test]
#[should_panic]
fn nans_02() {
encode((1.0, std::f32::NAN, -1.0));
}
#[test]
#[should_panic]
fn nans_03() {
encode((1.0, -1.0, std::f32::NAN));
}
}

View File

@ -1,19 +1,18 @@
//! Encoding/decoding for a 32-bit shared-exponent representation of three
//! positive floating point numbers.
//! Encoding/decoding for unsigned 32-bit trifloat numbers.
//!
//! This is useful for e.g. compactly storing HDR colors. The encoding
//! uses 9 bits of mantissa per number, and 5 bits for the shared
//! exponent. The bit layout is [mantissa 1, mantissa 2, mantissa 3,
//! exponent]. The exponent is stored as an unsigned integer with a
//! bias of 10.
//! The encoding uses 9 bits of mantissa per number, and 5 bits for the shared
//! exponent. The bit layout is [mantissa 1, mantissa 2, mantissa 3, exponent].
//! The exponent is stored as an unsigned integer with a bias of 10.
//!
//! The largest representable number is 2^21 - 4096, and the smallest
//! representable non-zero number is 2^-19.
//! The largest representable number is `2^21 - 4096`, and the smallest
//! representable non-zero number is `2^-19`.
//!
//! Since the exponent is shared between the three values, the precision
//! of all three values depends on the largest of the three. All integers
//! up to 512 can be represented exactly in the largest value.
use crate::{fiddle_exp2, fiddle_log2};
/// Largest representable number.
pub const MAX: f32 = 2_093_056.0;
@ -23,19 +22,18 @@ pub const MIN: f32 = 0.000_001_907_348_6;
/// Difference between 1.0 and the next largest representable number.
pub const EPSILON: f32 = 1.0 / 256.0;
#[derive(Debug, Copy, Clone)]
pub struct U9(u32);
const EXP_BIAS: i32 = 10;
const MIN_EXP: i32 = 0 - EXP_BIAS;
const MAX_EXP: i32 = 31 - EXP_BIAS;
/// Encodes three floating point values into the trifloat format.
/// Encodes three floating point values into a signed 32-bit trifloat.
///
/// Floats that are larger than the max representable value in trifloat
/// will saturate. Values are converted to trifloat by rounding, so the
/// max error introduced by this function is epsilon / 2.
/// Input floats larger than `MAX` will saturate to `MAX`, including infinity.
/// Values are converted to trifloat precision by rounding.
///
/// Warning: negative values and NaN's are _not_ supported by the trifloat
/// format. There are debug-only assertions in place to catch such
/// values in the input floats. Infinity is also not supported in the
/// format, but will simply saturate to the largest representable value.
/// values in the input floats.
#[inline]
pub fn encode(floats: (f32, f32, f32)) -> u32 {
debug_assert!(
@ -45,9 +43,9 @@ pub fn encode(floats: (f32, f32, f32)) -> u32 {
&& !floats.0.is_nan()
&& !floats.1.is_nan()
&& !floats.2.is_nan(),
"trifloat::encode(): encoding to tri-floats only works correctly for \
positive, non-NaN numbers, but the numbers passed were: ({}, \
{}, {})",
"trifloat::unsigned32::encode(): encoding to unsigned tri-floats only \
works correctly for positive, non-NaN numbers, but the numbers passed \
were: ({}, {}, {})",
floats.0,
floats.1,
floats.2
@ -60,13 +58,13 @@ pub fn encode(floats: (f32, f32, f32)) -> u32 {
}
// Calculate the exponent and 1.0/multiplier for encoding the values.
let mut exponent = (fiddle_log2(largest_value) + 1).max(-10).min(21);
let mut exponent = (fiddle_log2(largest_value) + 1).max(MIN_EXP).min(MAX_EXP);
let mut inv_multiplier = fiddle_exp2(-exponent + 9);
// Edge-case: make sure rounding pushes the largest value up
// appropriately if needed.
if (largest_value * inv_multiplier) + 0.5 >= 512.0 {
exponent = (exponent + 1).min(21);
exponent = (exponent + 1).min(MAX_EXP);
inv_multiplier = fiddle_exp2(-exponent + 9);
}
@ -74,13 +72,13 @@ pub fn encode(floats: (f32, f32, f32)) -> u32 {
let x = (floats.0 * inv_multiplier + 0.5).min(511.0) as u32 & 0b1_1111_1111;
let y = (floats.1 * inv_multiplier + 0.5).min(511.0) as u32 & 0b1_1111_1111;
let z = (floats.2 * inv_multiplier + 0.5).min(511.0) as u32 & 0b1_1111_1111;
let e = (exponent + 10) as u32 & 0b1_1111;
let e = (exponent + EXP_BIAS) as u32 & 0b1_1111;
// Pack values into a u32.
(x << (5 + 9 + 9)) | (y << (5 + 9)) | (z << 5) | e
}
/// Decodes a trifloat into three full floating point numbers.
/// Decodes an unsigned 32-bit trifloat into three full floating point numbers.
///
/// This operation is lossless and cannot fail.
#[inline]
@ -91,7 +89,7 @@ pub fn decode(trifloat: u32) -> (f32, f32, f32) {
let z = (trifloat >> 5) & 0b1_1111_1111;
let e = trifloat & 0b1_1111;
let multiplier = fiddle_exp2(e as i32 - 10 - 9);
let multiplier = fiddle_exp2(e as i32 - EXP_BIAS - 9);
(
x as f32 * multiplier,
@ -100,29 +98,6 @@ pub fn decode(trifloat: u32) -> (f32, f32, f32) {
)
}
/// Calculates 2.0^exp using IEEE bit fiddling.
///
/// Only works for integer exponents in the range [-126, 127]
/// due to IEEE 32-bit float limits.
#[inline(always)]
fn fiddle_exp2(exp: i32) -> f32 {
use std::f32;
f32::from_bits(((exp + 127) as u32) << 23)
}
/// Calculates a floor(log2(n)) using IEEE bit fiddling.
///
/// Because of IEEE floating point format, infinity and NaN
/// floating point values return 128, and subnormal numbers always
/// return -127. These particular behaviors are not, of course,
/// mathemetically correct, but are actually desireable for the
/// calculations in this library.
#[inline(always)]
fn fiddle_log2(n: f32) -> i32 {
use std::f32;
((f32::to_bits(n) >> 23) & 0b1111_1111) as i32 - 127
}
#[cfg(test)]
mod tests {
use super::*;
@ -216,4 +191,45 @@ mod tests {
assert_eq!(encode(fs), 0);
assert_eq!(round_trip(fs), (0.0, 0.0, 0.0));
}
#[test]
#[should_panic]
fn nans_01() {
encode((std::f32::NAN, 0.0, 0.0));
}
#[test]
#[should_panic]
fn nans_02() {
encode((0.0, std::f32::NAN, 0.0));
}
#[test]
#[should_panic]
fn nans_03() {
encode((0.0, 0.0, std::f32::NAN));
}
#[test]
#[should_panic]
fn negative_01() {
encode((-1.0, 0.0, 0.0));
}
#[test]
#[should_panic]
fn negative_02() {
encode((0.0, -1.0, 0.0));
}
#[test]
#[should_panic]
fn negative_03() {
encode((0.0, 0.0, -1.0));
}
#[test]
fn negative_04() {
encode((-0.0, -0.0, -0.0));
}
}