Implemented a "Micropolygon Batch" type.
This is in prep for a shade-before-hit architecture. The type is currently unused and untested. architecture.
This commit is contained in:
parent
8e109efed5
commit
112f94c127
|
@ -298,7 +298,6 @@ impl<'a> Surface for RectangleLight<'a> {
|
|||
pos_err: pos_err,
|
||||
nor: normal,
|
||||
nor_g: normal,
|
||||
uv: (0.0, 0.0), // TODO
|
||||
local_space: xform,
|
||||
sample_pdf: self.sample_pdf(
|
||||
&xform,
|
||||
|
|
|
@ -306,7 +306,6 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
pos_err: pos_err,
|
||||
nor: normal,
|
||||
nor_g: normal,
|
||||
uv: (0.0, 0.0), // TODO
|
||||
local_space: xform,
|
||||
sample_pdf: self.sample_pdf(
|
||||
&xform,
|
||||
|
|
262
src/surface/micropoly_batch.rs
Normal file
262
src/surface/micropoly_batch.rs
Normal file
|
@ -0,0 +1,262 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
accel::BVH4,
|
||||
bbox::BBox,
|
||||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::{cross, dot, Matrix4x4, Normal, Point},
|
||||
ray::{AccelRay, Ray},
|
||||
shading::{surface_closure::SurfaceClosure, SurfaceShader},
|
||||
};
|
||||
|
||||
use super::{triangle, Surface, SurfaceIntersection, SurfaceIntersectionData};
|
||||
|
||||
/// This is the core surface primitive for rendering: all surfaces are
|
||||
/// ultimately processed into pre-shaded micropolygon batches for rendering.
|
||||
///
|
||||
/// It is essentially a triangle soup that shares the same surface shader.
|
||||
/// The parameters of that shader can vary over the triangles, but its
|
||||
/// structure cannot.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct MicropolyBatch<'a> {
|
||||
// Vertices and associated normals. Time samples for the same vertex are
|
||||
// laid out next to each other in a contiguous slice.
|
||||
time_sample_count: usize,
|
||||
vertices: &'a [Point],
|
||||
normals: &'a [Normal],
|
||||
|
||||
// Per-vertex shading data.
|
||||
vertex_closures: &'a [SurfaceClosure],
|
||||
|
||||
// Micro-triangle indices. Each element of the tuple specifies the index
|
||||
// of a vertex, which indexes into all of the arrays above.
|
||||
indices: &'a [(u32, u32, u32)],
|
||||
|
||||
// Acceleration structure for fast ray intersection testing.
|
||||
accel: BVH4<'a>,
|
||||
}
|
||||
|
||||
impl<'a> MicropolyBatch<'a> {
|
||||
pub fn from_verts_and_indices<'b>(
|
||||
arena: &'b MemArena,
|
||||
geo_time_sample_count: usize,
|
||||
verts: &[Point],
|
||||
vert_normals: &[Normal],
|
||||
vert_closures: &[SurfaceClosure],
|
||||
triangles: &[(u32, u32, u32)],
|
||||
) -> MicropolyBatch<'b> {
|
||||
// Create bounds array for use during BVH construction
|
||||
let bounds = {
|
||||
let mut bounds = Vec::with_capacity(triangles.len() * geo_time_sample_count);
|
||||
for tri in triangles {
|
||||
for ti in 0..geo_time_sample_count {
|
||||
let p0 = verts[(tri.0 as usize * geo_time_sample_count) + ti];
|
||||
let p1 = verts[(tri.1 as usize * geo_time_sample_count) + ti];
|
||||
let p2 = verts[(tri.2 as usize * geo_time_sample_count) + ti];
|
||||
let minimum = p0.min(p1.min(p2));
|
||||
let maximum = p0.max(p1.max(p2));
|
||||
bounds.push(BBox::from_points(minimum, maximum));
|
||||
}
|
||||
}
|
||||
bounds
|
||||
};
|
||||
|
||||
// Create an array of triangle indices for use during the BVH build.
|
||||
let mut tmp_indices: Vec<_> = (0u32..(triangles.len() as u32)).collect();
|
||||
|
||||
// Build BVH
|
||||
let accel = BVH4::from_objects(arena, &mut tmp_indices[..], 3, |index| {
|
||||
&bounds[(*index as usize * geo_time_sample_count)
|
||||
..((*index as usize + 1) * geo_time_sample_count)]
|
||||
});
|
||||
|
||||
// Copy triangle vertex indices over in the post-bvh-build order.
|
||||
let indices = {
|
||||
let indices = unsafe { arena.alloc_array_uninitialized(triangles.len()) };
|
||||
for (i, tmp_i) in tmp_indices.iter().enumerate() {
|
||||
indices[i] = triangles[*tmp_i as usize];
|
||||
}
|
||||
indices
|
||||
};
|
||||
|
||||
MicropolyBatch {
|
||||
time_sample_count: geo_time_sample_count,
|
||||
vertices: arena.copy_slice(verts),
|
||||
normals: arena.copy_slice(vert_normals),
|
||||
|
||||
vertex_closures: arena.copy_slice(vert_closures),
|
||||
|
||||
indices: indices,
|
||||
|
||||
accel: accel,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for MicropolyBatch<'a> {
|
||||
fn bounds(&self) -> &[BBox] {
|
||||
self.accel.bounds()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Surface for MicropolyBatch<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
isects: &mut [SurfaceIntersection],
|
||||
_shader: &SurfaceShader,
|
||||
space: &[Matrix4x4],
|
||||
) {
|
||||
// Precalculate transform for non-motion blur cases
|
||||
let static_mat_space = if space.len() == 1 {
|
||||
space[0].inverse()
|
||||
} else {
|
||||
Matrix4x4::new()
|
||||
};
|
||||
|
||||
self.accel
|
||||
.traverse(&mut accel_rays[..], self.indices, |tri_indices, rs| {
|
||||
// For static triangles with static transforms, cache them.
|
||||
let is_cached = self.time_sample_count == 1 && space.len() <= 1;
|
||||
let mut tri = if is_cached {
|
||||
let tri = (
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
);
|
||||
if space.is_empty() {
|
||||
tri
|
||||
} else {
|
||||
(
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
)
|
||||
}
|
||||
} else {
|
||||
unsafe { std::mem::uninitialized() }
|
||||
};
|
||||
|
||||
// Test each ray against the current triangle.
|
||||
for r in rs {
|
||||
let wr = &wrays[r.id as usize];
|
||||
|
||||
// Get triangle if necessary
|
||||
if !is_cached {
|
||||
tri = if self.time_sample_count == 1 {
|
||||
// No deformation motion blur, so fast-path it.
|
||||
(
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
)
|
||||
} else {
|
||||
// Deformation motion blur, need to interpolate.
|
||||
let p0_slice = &self.vertices[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let p1_slice = &self.vertices[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let p2_slice = &self.vertices[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let p0 = lerp_slice(p0_slice, wr.time);
|
||||
let p1 = lerp_slice(p1_slice, wr.time);
|
||||
let p2 = lerp_slice(p2_slice, wr.time);
|
||||
|
||||
(p0, p1, p2)
|
||||
};
|
||||
}
|
||||
|
||||
// Transform triangle if necessary, and get transform space.
|
||||
let mat_space = if !space.is_empty() {
|
||||
if space.len() > 1 {
|
||||
// Per-ray transform, for motion blur
|
||||
let mat_space = lerp_slice(space, wr.time).inverse();
|
||||
tri = (tri.0 * mat_space, tri.1 * mat_space, tri.2 * mat_space);
|
||||
mat_space
|
||||
} else {
|
||||
// Same transform for all rays
|
||||
if !is_cached {
|
||||
tri = (
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
);
|
||||
}
|
||||
static_mat_space
|
||||
}
|
||||
} else {
|
||||
// No transforms
|
||||
Matrix4x4::new()
|
||||
};
|
||||
|
||||
// Test ray against triangle
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(wr, tri) {
|
||||
if t < r.max_t {
|
||||
if r.is_occlusion() {
|
||||
isects[r.id as usize] = SurfaceIntersection::Occlude;
|
||||
r.mark_done();
|
||||
} else {
|
||||
// Calculate intersection point and error magnitudes
|
||||
let (pos, pos_err) = triangle::surface_point(tri, (b0, b1, b2));
|
||||
|
||||
// Calculate geometric surface normal
|
||||
let geo_normal = cross(tri.0 - tri.1, tri.0 - tri.2).into_normal();
|
||||
|
||||
// Calculate interpolated surface normal
|
||||
let shading_normal = {
|
||||
let n0_slice = &self.normals[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let n1_slice = &self.normals[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let n2_slice = &self.normals[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let n0 = lerp_slice(n0_slice, wr.time).normalized();
|
||||
let n1 = lerp_slice(n1_slice, wr.time).normalized();
|
||||
let n2 = lerp_slice(n2_slice, wr.time).normalized();
|
||||
|
||||
let s_nor = ((n0 * b0) + (n1 * b1) + (n2 * b2)) * mat_space;
|
||||
if dot(s_nor, geo_normal) >= 0.0 {
|
||||
s_nor
|
||||
} else {
|
||||
-s_nor
|
||||
}
|
||||
};
|
||||
|
||||
// Calculate surface closure
|
||||
// TODO: use interpolation between the vertices
|
||||
let surface_closure = self.vertex_closures[tri_indices.0 as usize];
|
||||
|
||||
// Fill in intersection data
|
||||
isects[r.id as usize] = SurfaceIntersection::Hit {
|
||||
intersection_data: SurfaceIntersectionData {
|
||||
incoming: wr.dir,
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
},
|
||||
closure: surface_closure,
|
||||
};
|
||||
r.max_t = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
|
@ -1,5 +1,6 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
pub mod micropoly_batch;
|
||||
pub mod triangle;
|
||||
pub mod triangle_mesh;
|
||||
|
||||
|
@ -45,6 +46,5 @@ pub struct SurfaceIntersectionData {
|
|||
pub nor_g: Normal, // True geometric normal
|
||||
pub local_space: Matrix4x4, // Matrix from global space to local space
|
||||
pub t: f32, // Ray t-value at the intersection point
|
||||
pub uv: (f32, f32), // 2d surface parameters
|
||||
pub sample_pdf: f32, // The PDF of getting this point by explicitly sampling the surface
|
||||
}
|
||||
|
|
|
@ -255,7 +255,6 @@ impl<'a> Surface for TriangleMesh<'a> {
|
|||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
uv: (0.0, 0.0), // TODO
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue
Block a user