Switched all uninitialized memory to use MaybeUninit.

This commit is contained in:
Nathan Vegdahl 2019-07-06 13:46:54 +09:00
parent 452a29a95c
commit 152d265c82
6 changed files with 196 additions and 113 deletions

View File

@ -4,6 +4,8 @@
#![allow(dead_code)] #![allow(dead_code)]
use std::mem::{transmute, MaybeUninit};
use mem_arena::MemArena; use mem_arena::MemArena;
use crate::{ use crate::{
@ -71,7 +73,7 @@ impl<'a> BVH4<'a> {
} else { } else {
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder); let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) }; let fill_node = arena.alloc_uninitialized_with_alignment::<BVH4Node>(32);
let node_count = BVH4::construct_from_base( let node_count = BVH4::construct_from_base(
arena, arena,
&base, &base,
@ -80,7 +82,7 @@ impl<'a> BVH4<'a> {
); );
BVH4 { BVH4 {
root: Some(fill_node), root: Some(unsafe { transmute(fill_node) }),
depth: (base.depth / 2) + 1, depth: (base.depth / 2) + 1,
node_count: node_count, node_count: node_count,
_bounds: { _bounds: {
@ -184,7 +186,7 @@ impl<'a> BVH4<'a> {
arena: &'a MemArena, arena: &'a MemArena,
base: &BVHBase, base: &BVHBase,
node: &BVHBaseNode, node: &BVHBaseNode,
fill_node: &mut BVH4Node<'a>, fill_node: &mut MaybeUninit<BVH4Node<'a>>,
) -> usize { ) -> usize {
let mut node_count = 0; let mut node_count = 0;
@ -282,8 +284,7 @@ impl<'a> BVH4<'a> {
.max() .max()
.unwrap(); .unwrap();
debug_assert!(bounds_len >= 1); debug_assert!(bounds_len >= 1);
let bounds = let bounds = arena.alloc_array_uninitialized_with_alignment(bounds_len, 32);
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
if bounds_len < 2 { if bounds_len < 2 {
let b1 = let b1 =
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]); children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
@ -293,7 +294,9 @@ impl<'a> BVH4<'a> {
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]); children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b4 = let b4 =
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]); children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4); unsafe {
*bounds[0].as_mut_ptr() = BBox4::from_bboxes(b1, b2, b3, b4);
}
} else { } else {
for (i, b) in bounds.iter_mut().enumerate() { for (i, b) in bounds.iter_mut().enumerate() {
let time = i as f32 / (bounds_len - 1) as f32; let time = i as f32 / (bounds_len - 1) as f32;
@ -314,34 +317,39 @@ impl<'a> BVH4<'a> {
let (x, y) = c.bounds_range(); let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time) lerp_slice(&base.bounds[x..y], time)
}); });
*b = BBox4::from_bboxes(b1, b2, b3, b4); unsafe {
*b.as_mut_ptr() = BBox4::from_bboxes(b1, b2, b3, b4);
}
} }
} }
bounds bounds
}; };
// Construct child nodes // Construct child nodes
let child_nodes = unsafe { let child_nodes =
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32) arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32);
};
for (i, c) in children[0..child_count].iter().enumerate() { for (i, c) in children[0..child_count].iter().enumerate() {
node_count += node_count +=
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]); BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
} }
// Build this node // Build this node
*fill_node = BVH4Node::Internal { unsafe {
bounds: bounds, *fill_node.as_mut_ptr() = BVH4Node::Internal {
children: child_nodes, bounds: transmute(bounds),
traversal_code: calc_traversal_code(split_info), children: transmute(child_nodes),
}; traversal_code: calc_traversal_code(split_info),
};
}
} }
// Create internal node // Create internal node
&BVHBaseNode::Leaf { object_range, .. } => { &BVHBaseNode::Leaf { object_range, .. } => {
*fill_node = BVH4Node::Leaf { unsafe {
object_range: object_range, *fill_node.as_mut_ptr() = BVH4Node::Leaf {
}; object_range: object_range,
};
}
node_count += 1; node_count += 1;
} }
} }

View File

@ -1,3 +1,5 @@
use std::mem::{transmute, MaybeUninit};
use mem_arena::MemArena; use mem_arena::MemArena;
use crate::{ use crate::{
@ -74,11 +76,11 @@ impl<'a> LightTree<'a> {
let mut builder = LightTreeBuilder::new(); let mut builder = LightTreeBuilder::new();
builder.recursive_build(0, 0, objects, &info_getter); builder.recursive_build(0, 0, objects, &info_getter);
let root = unsafe { arena.alloc_uninitialized::<Node>() }; let root = arena.alloc_uninitialized::<Node>();
LightTree::construct_from_builder(arena, &builder, builder.root_node_index(), root); LightTree::construct_from_builder(arena, &builder, builder.root_node_index(), root);
LightTree { LightTree {
root: Some(root), root: Some(unsafe { transmute(root) }),
depth: builder.depth, depth: builder.depth,
} }
} }
@ -88,25 +90,27 @@ impl<'a> LightTree<'a> {
arena: &'a MemArena, arena: &'a MemArena,
base: &LightTreeBuilder, base: &LightTreeBuilder,
node_index: usize, node_index: usize,
node_mem: &mut Node<'a>, node_mem: &mut MaybeUninit<Node<'a>>,
) { ) {
if base.nodes[node_index].is_leaf { if base.nodes[node_index].is_leaf {
// Leaf // Leaf
let bounds_range = base.nodes[node_index].bounds_range; let bounds_range = base.nodes[node_index].bounds_range;
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]); let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
*node_mem = Node::Leaf { unsafe {
light_index: base.nodes[node_index].child_index, *node_mem.as_mut_ptr() = Node::Leaf {
bounds: bounds, light_index: base.nodes[node_index].child_index,
energy: base.nodes[node_index].energy, bounds: bounds,
}; energy: base.nodes[node_index].energy,
};
}
} else { } else {
// Inner // Inner
let bounds_range = base.nodes[node_index].bounds_range; let bounds_range = base.nodes[node_index].bounds_range;
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]); let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
let child_count = base.node_child_count(node_index); let child_count = base.node_child_count(node_index);
let children = unsafe { arena.alloc_array_uninitialized::<Node>(child_count) }; let children = arena.alloc_array_uninitialized::<Node>(child_count);
for i in 0..child_count { for i in 0..child_count {
LightTree::construct_from_builder( LightTree::construct_from_builder(
arena, arena,
@ -116,11 +120,13 @@ impl<'a> LightTree<'a> {
); );
} }
*node_mem = Node::Inner { unsafe {
children: children, *node_mem.as_mut_ptr() = Node::Inner {
bounds: bounds, children: transmute(children),
energy: base.nodes[node_index].energy, bounds: bounds,
}; energy: base.nodes[node_index].energy,
};
}
} }
} }
} }

View File

@ -1,6 +1,9 @@
#![allow(dead_code)] #![allow(dead_code)]
use std::cmp::{self, Ordering}; use std::{
cmp::{self, Ordering},
mem::MaybeUninit,
};
use crate::{ use crate::{
hash::hash_u64, hash::hash_u64,
@ -260,8 +263,12 @@ pub fn merge_slices_append<T: Lerp + Copy, F>(
/// Merges two slices of things, storing the result in `slice_out`. /// Merges two slices of things, storing the result in `slice_out`.
/// Panics if `slice_out` is not the right size. /// Panics if `slice_out` is not the right size.
pub fn merge_slices_to<T: Lerp + Copy, F>(slice1: &[T], slice2: &[T], slice_out: &mut [T], merge: F) pub fn merge_slices_to<T: Lerp + Copy, F>(
where slice1: &[T],
slice2: &[T],
slice_out: &mut [MaybeUninit<T>],
merge: F,
) where
F: Fn(&T, &T) -> T, F: Fn(&T, &T) -> T,
{ {
assert_eq!(slice_out.len(), cmp::max(slice1.len(), slice2.len())); assert_eq!(slice_out.len(), cmp::max(slice1.len(), slice2.len()));
@ -274,19 +281,25 @@ where
slice_out.iter_mut(), slice_out.iter_mut(),
Iterator::zip(slice1.iter(), slice2.iter()), Iterator::zip(slice1.iter(), slice2.iter()),
) { ) {
*xfo = merge(xf1, xf2); unsafe {
*xfo.as_mut_ptr() = merge(xf1, xf2);
}
} }
} else if slice1.len() > slice2.len() { } else if slice1.len() > slice2.len() {
let s = (slice1.len() - 1) as f32; let s = (slice1.len() - 1) as f32;
for (i, (xfo, xf1)) in Iterator::zip(slice_out.iter_mut(), slice1.iter()).enumerate() { for (i, (xfo, xf1)) in Iterator::zip(slice_out.iter_mut(), slice1.iter()).enumerate() {
let xf2 = lerp_slice(slice2, i as f32 / s); let xf2 = lerp_slice(slice2, i as f32 / s);
*xfo = merge(xf1, &xf2); unsafe {
*xfo.as_mut_ptr() = merge(xf1, &xf2);
}
} }
} else if slice1.len() < slice2.len() { } else if slice1.len() < slice2.len() {
let s = (slice2.len() - 1) as f32; let s = (slice2.len() - 1) as f32;
for (i, (xfo, xf2)) in Iterator::zip(slice_out.iter_mut(), slice2.iter()).enumerate() { for (i, (xfo, xf2)) in Iterator::zip(slice_out.iter_mut(), slice2.iter()).enumerate() {
let xf1 = lerp_slice(slice1, i as f32 / s); let xf1 = lerp_slice(slice1, i as f32 / s);
*xfo = merge(&xf1, xf2); unsafe {
*xfo.as_mut_ptr() = merge(&xf1, xf2);
}
} }
} }
} }

View File

@ -38,44 +38,49 @@ impl<'a> TriangleMesh<'a> {
// Copy verts over to a contiguous area of memory, reorganizing them // Copy verts over to a contiguous area of memory, reorganizing them
// so that each vertices' time samples are contiguous in memory. // so that each vertices' time samples are contiguous in memory.
let vertices = { let vertices = {
let vertices = let vertices = arena.alloc_array_uninitialized(vert_count * time_sample_count);
unsafe { arena.alloc_array_uninitialized(vert_count * time_sample_count) };
for vi in 0..vert_count { for vi in 0..vert_count {
for ti in 0..time_sample_count { for ti in 0..time_sample_count {
vertices[(vi * time_sample_count) + ti] = verts[ti][vi]; unsafe {
*vertices[(vi * time_sample_count) + ti].as_mut_ptr() = verts[ti][vi];
}
} }
} }
vertices unsafe { std::mem::transmute(vertices) }
}; };
// Copy vertex normals, if any, organizing them the same as vertices // Copy vertex normals, if any, organizing them the same as vertices
// above. // above.
let normals = match vert_normals { let normals = match vert_normals {
Some(ref vnors) => { Some(ref vnors) => {
let normals = let normals = arena.alloc_array_uninitialized(vert_count * time_sample_count);
unsafe { arena.alloc_array_uninitialized(vert_count * time_sample_count) };
for vi in 0..vert_count { for vi in 0..vert_count {
for ti in 0..time_sample_count { for ti in 0..time_sample_count {
normals[(vi * time_sample_count) + ti] = vnors[ti][vi]; unsafe {
*normals[(vi * time_sample_count) + ti].as_mut_ptr() = vnors[ti][vi];
}
} }
} }
Some(&normals[..]) unsafe { Some(std::mem::transmute(&normals[..])) }
} }
None => None, None => None,
}; };
// Copy triangle vertex indices over, appending the triangle index itself to the tuple // Copy triangle vertex indices over, appending the triangle index itself to the tuple
let indices = { let indices: &mut [(u32, u32, u32, u32)] = {
let indices = unsafe { arena.alloc_array_uninitialized(tri_indices.len()) }; let indices = arena.alloc_array_uninitialized(tri_indices.len());
for (i, tri_i) in tri_indices.iter().enumerate() { for (i, tri_i) in tri_indices.iter().enumerate() {
indices[i] = (tri_i.0 as u32, tri_i.2 as u32, tri_i.1 as u32, i as u32); unsafe {
*indices[i].as_mut_ptr() =
(tri_i.0 as u32, tri_i.2 as u32, tri_i.1 as u32, i as u32);
}
} }
indices unsafe { std::mem::transmute(indices) }
}; };
// Create bounds array for use during BVH construction // Create bounds array for use during BVH construction
@ -140,22 +145,27 @@ impl<'a> Surface for TriangleMesh<'a> {
let is_cached = ray_stack.ray_count_in_next_task() >= tri_count let is_cached = ray_stack.ray_count_in_next_task() >= tri_count
&& self.time_sample_count == 1 && self.time_sample_count == 1
&& space.len() <= 1; && space.len() <= 1;
let mut tri_cache = [unsafe { std::mem::uninitialized() }; MAX_LEAF_TRIANGLE_COUNT]; let mut tri_cache = [std::mem::MaybeUninit::uninit(); MAX_LEAF_TRIANGLE_COUNT];
if is_cached { if is_cached {
for tri_idx in idx_range.clone() { for tri_idx in idx_range.clone() {
let i = tri_idx - idx_range.start; let i = tri_idx - idx_range.start;
let tri_indices = self.indices[tri_idx]; let tri_indices = self.indices[tri_idx];
// For static triangles with static transforms, cache them. // For static triangles with static transforms, cache them.
tri_cache[i] = ( unsafe {
self.vertices[tri_indices.0 as usize], *tri_cache[i].as_mut_ptr() = (
self.vertices[tri_indices.1 as usize], self.vertices[tri_indices.0 as usize],
self.vertices[tri_indices.2 as usize], self.vertices[tri_indices.1 as usize],
); self.vertices[tri_indices.2 as usize],
if !space.is_empty() { );
tri_cache[i].0 = tri_cache[i].0 * static_mat_space; if !space.is_empty() {
tri_cache[i].1 = tri_cache[i].1 * static_mat_space; (*tri_cache[i].as_mut_ptr()).0 =
tri_cache[i].2 = tri_cache[i].2 * static_mat_space; (*tri_cache[i].as_mut_ptr()).0 * static_mat_space;
(*tri_cache[i].as_mut_ptr()).1 =
(*tri_cache[i].as_mut_ptr()).1 * static_mat_space;
(*tri_cache[i].as_mut_ptr()).2 =
(*tri_cache[i].as_mut_ptr()).2 * static_mat_space;
}
} }
} }
} }
@ -180,9 +190,9 @@ impl<'a> Surface for TriangleMesh<'a> {
// Iterate through the triangles and test the ray against them. // Iterate through the triangles and test the ray against them.
let mut non_shadow_hit = false; let mut non_shadow_hit = false;
let mut hit_tri = unsafe { std::mem::uninitialized() }; let mut hit_tri = std::mem::MaybeUninit::uninit();
let mut hit_tri_indices = unsafe { std::mem::uninitialized() }; let mut hit_tri_indices = std::mem::MaybeUninit::uninit();
let mut hit_tri_data = unsafe { std::mem::uninitialized() }; let mut hit_tri_data = std::mem::MaybeUninit::uninit();
let ray_pre = triangle::RayTriPrecompute::new(rays.dir(ray_idx)); let ray_pre = triangle::RayTriPrecompute::new(rays.dir(ray_idx));
for tri_idx in idx_range.clone() { for tri_idx in idx_range.clone() {
let tri_indices = self.indices[tri_idx]; let tri_indices = self.indices[tri_idx];
@ -190,7 +200,7 @@ impl<'a> Surface for TriangleMesh<'a> {
// Get triangle if necessary // Get triangle if necessary
let tri = if is_cached { let tri = if is_cached {
let i = tri_idx - idx_range.start; let i = tri_idx - idx_range.start;
tri_cache[i] unsafe { tri_cache[i].assume_init() }
} else { } else {
let mut tri = if self.time_sample_count == 1 { let mut tri = if self.time_sample_count == 1 {
// No deformation motion blur, so fast-path it. // No deformation motion blur, so fast-path it.
@ -241,16 +251,19 @@ impl<'a> Surface for TriangleMesh<'a> {
} else { } else {
non_shadow_hit = true; non_shadow_hit = true;
rays.set_max_t(ray_idx, t); rays.set_max_t(ray_idx, t);
hit_tri = tri; unsafe {
hit_tri_indices = tri_indices; *hit_tri.as_mut_ptr() = tri;
hit_tri_data = (t, b0, b1, b2); *hit_tri_indices.as_mut_ptr() = tri_indices;
*hit_tri_data.as_mut_ptr() = (t, b0, b1, b2);
}
} }
} }
} }
// Calculate intersection data if necessary. // Calculate intersection data if necessary.
if non_shadow_hit { if non_shadow_hit {
let (t, b0, b1, b2) = hit_tri_data; let hit_tri = unsafe { hit_tri.assume_init() };
let (t, b0, b1, b2) = unsafe { hit_tri_data.assume_init() };
// Calculate intersection point and error magnitudes // Calculate intersection point and error magnitudes
let (pos, pos_err) = triangle::surface_point(hit_tri, (b0, b1, b2)); let (pos, pos_err) = triangle::surface_point(hit_tri, (b0, b1, b2));
@ -261,6 +274,7 @@ impl<'a> Surface for TriangleMesh<'a> {
// Calculate interpolated surface normal, if any // Calculate interpolated surface normal, if any
let shading_normal = if let Some(normals) = self.normals { let shading_normal = if let Some(normals) = self.normals {
let hit_tri_indices = unsafe { hit_tri_indices.assume_init() };
let n0_slice = &normals[(hit_tri_indices.0 as usize let n0_slice = &normals[(hit_tri_indices.0 as usize
* self.time_sample_count) * self.time_sample_count)
..((hit_tri_indices.0 as usize + 1) * self.time_sample_count)]; ..((hit_tri_indices.0 as usize + 1) * self.time_sample_count)];

View File

@ -1,9 +1,12 @@
use std::cmp; use std::{
cmp,
mem::{transmute, MaybeUninit},
};
use crate::{algorithm::merge_slices_to, math::Matrix4x4}; use crate::{algorithm::merge_slices_to, math::Matrix4x4};
pub struct TransformStack { pub struct TransformStack {
stack: Vec<Matrix4x4>, stack: Vec<MaybeUninit<Matrix4x4>>,
stack_indices: Vec<usize>, stack_indices: Vec<usize>,
} }
@ -31,6 +34,7 @@ impl TransformStack {
assert!(!xforms.is_empty()); assert!(!xforms.is_empty());
if self.stack.is_empty() { if self.stack.is_empty() {
let xforms: &[MaybeUninit<Matrix4x4>] = unsafe { transmute(xforms) };
self.stack.extend(xforms); self.stack.extend(xforms);
} else { } else {
let sil = self.stack_indices.len(); let sil = self.stack_indices.len();
@ -46,7 +50,12 @@ impl TransformStack {
unsafe { self.stack.set_len(l + maxlen) }; unsafe { self.stack.set_len(l + maxlen) };
} }
let (xfs1, xfs2) = self.stack.split_at_mut(i2); let (xfs1, xfs2) = self.stack.split_at_mut(i2);
merge_slices_to(&xfs1[i1..i2], xforms, xfs2, |xf1, xf2| *xf1 * *xf2); merge_slices_to(
unsafe { transmute(&xfs1[i1..i2]) },
xforms,
xfs2,
|xf1, xf2| *xf1 * *xf2,
);
} }
self.stack_indices.push(self.stack.len()); self.stack_indices.push(self.stack.len());
@ -69,6 +78,6 @@ impl TransformStack {
let i1 = self.stack_indices[sil - 2]; let i1 = self.stack_indices[sil - 2];
let i2 = self.stack_indices[sil - 1]; let i2 = self.stack_indices[sil - 1];
&self.stack[i1..i2] unsafe { transmute(&self.stack[i1..i2]) }
} }
} }

View File

@ -5,7 +5,8 @@
use std::{ use std::{
cell::{Cell, RefCell}, cell::{Cell, RefCell},
cmp::max, cmp::max,
mem::{align_of, size_of}, fmt,
mem::{align_of, size_of, transmute, MaybeUninit},
slice, slice,
}; };
@ -26,15 +27,27 @@ fn alignment_offset(addr: usize, alignment: usize) -> usize {
/// ///
/// Additionally, it attempts to minimize wasted space through some heuristics. By /// Additionally, it attempts to minimize wasted space through some heuristics. By
/// default, it tries to keep memory waste within the arena below 10%. /// default, it tries to keep memory waste within the arena below 10%.
#[derive(Debug, Default)] #[derive(Default)]
pub struct MemArena { pub struct MemArena {
blocks: RefCell<Vec<Vec<u8>>>, blocks: RefCell<Vec<Vec<MaybeUninit<u8>>>>,
min_block_size: usize, min_block_size: usize,
max_waste_percentage: usize, max_waste_percentage: usize,
stat_space_occupied: Cell<usize>, stat_space_occupied: Cell<usize>,
stat_space_allocated: Cell<usize>, stat_space_allocated: Cell<usize>,
} }
impl fmt::Debug for MemArena {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("MemArena")
.field("blocks.len():", &self.blocks.borrow().len())
.field("min_block_size", &self.min_block_size)
.field("max_waste_percentage", &self.max_waste_percentage)
.field("stat_space_occupied", &self.stat_space_occupied)
.field("stat_space_allocated", &self.stat_space_allocated)
.finish()
}
}
impl MemArena { impl MemArena {
/// Create a new arena, with default minimum block size. /// Create a new arena, with default minimum block size.
pub fn new() -> MemArena { pub fn new() -> MemArena {
@ -111,9 +124,11 @@ impl MemArena {
/// Allocates memory for and initializes a type T, returning a mutable reference to it. /// Allocates memory for and initializes a type T, returning a mutable reference to it.
pub fn alloc<T: Copy>(&self, value: T) -> &mut T { pub fn alloc<T: Copy>(&self, value: T) -> &mut T {
let memory = unsafe { self.alloc_uninitialized() }; let memory = self.alloc_uninitialized();
*memory = value; unsafe {
memory *memory.as_mut_ptr() = value;
}
unsafe { transmute(memory) }
} }
/// Allocates memory for and initializes a type T, returning a mutable reference to it. /// Allocates memory for and initializes a type T, returning a mutable reference to it.
@ -121,20 +136,22 @@ impl MemArena {
/// Additionally, the allocation will be made with the given byte alignment or /// Additionally, the allocation will be made with the given byte alignment or
/// the type's inherent alignment, whichever is greater. /// the type's inherent alignment, whichever is greater.
pub fn alloc_with_alignment<T: Copy>(&self, value: T, align: usize) -> &mut T { pub fn alloc_with_alignment<T: Copy>(&self, value: T, align: usize) -> &mut T {
let memory = unsafe { self.alloc_uninitialized_with_alignment(align) }; let memory = self.alloc_uninitialized_with_alignment(align);
*memory = value; unsafe {
memory *memory.as_mut_ptr() = value;
}
unsafe { transmute(memory) }
} }
/// Allocates memory for a type `T`, returning a mutable reference to it. /// Allocates memory for a type `T`, returning a mutable reference to it.
/// ///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using! /// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_uninitialized<T: Copy>(&self) -> &mut T { pub fn alloc_uninitialized<T: Copy>(&self) -> &mut MaybeUninit<T> {
assert!(size_of::<T>() > 0); assert!(size_of::<T>() > 0);
let memory = self.alloc_raw(size_of::<T>(), align_of::<T>()) as *mut T; let memory = self.alloc_raw(size_of::<T>(), align_of::<T>()) as *mut MaybeUninit<T>;
memory.as_mut().unwrap() unsafe { memory.as_mut().unwrap() }
} }
/// Allocates memory for a type `T`, returning a mutable reference to it. /// Allocates memory for a type `T`, returning a mutable reference to it.
@ -143,24 +160,27 @@ impl MemArena {
/// the type's inherent alignment, whichever is greater. /// the type's inherent alignment, whichever is greater.
/// ///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using! /// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_uninitialized_with_alignment<T: Copy>(&self, align: usize) -> &mut T { pub fn alloc_uninitialized_with_alignment<T: Copy>(&self, align: usize) -> &mut MaybeUninit<T> {
assert!(size_of::<T>() > 0); assert!(size_of::<T>() > 0);
let memory = self.alloc_raw(size_of::<T>(), max(align, align_of::<T>())) as *mut T; let memory =
self.alloc_raw(size_of::<T>(), max(align, align_of::<T>())) as *mut MaybeUninit<T>;
memory.as_mut().unwrap() unsafe { memory.as_mut().unwrap() }
} }
/// Allocates memory for `len` values of type `T`, returning a mutable slice to it. /// Allocates memory for `len` values of type `T`, returning a mutable slice to it.
/// All elements are initialized to the given `value`. /// All elements are initialized to the given `value`.
pub fn alloc_array<T: Copy>(&self, len: usize, value: T) -> &mut [T] { pub fn alloc_array<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
let memory = unsafe { self.alloc_array_uninitialized(len) }; let memory = self.alloc_array_uninitialized(len);
for v in memory.iter_mut() { for v in memory.iter_mut() {
*v = value; unsafe {
*v.as_mut_ptr() = value;
}
} }
memory unsafe { transmute(memory) }
} }
/// Allocates memory for `len` values of type `T`, returning a mutable slice to it. /// Allocates memory for `len` values of type `T`, returning a mutable slice to it.
@ -174,25 +194,29 @@ impl MemArena {
value: T, value: T,
align: usize, align: usize,
) -> &mut [T] { ) -> &mut [T] {
let memory = unsafe { self.alloc_array_uninitialized_with_alignment(len, align) }; let memory = self.alloc_array_uninitialized_with_alignment(len, align);
for v in memory.iter_mut() { for v in memory.iter_mut() {
*v = value; unsafe {
*v.as_mut_ptr() = value;
}
} }
memory unsafe { transmute(memory) }
} }
/// Allocates and initializes memory to duplicate the given slice, returning a mutable slice /// Allocates and initializes memory to duplicate the given slice, returning a mutable slice
/// to the new copy. /// to the new copy.
pub fn copy_slice<T: Copy>(&self, other: &[T]) -> &mut [T] { pub fn copy_slice<T: Copy>(&self, other: &[T]) -> &mut [T] {
let memory = unsafe { self.alloc_array_uninitialized(other.len()) }; let memory = self.alloc_array_uninitialized(other.len());
for (v, other) in memory.iter_mut().zip(other.iter()) { for (v, other) in memory.iter_mut().zip(other.iter()) {
*v = *other; unsafe {
*v.as_mut_ptr() = *other;
}
} }
memory unsafe { transmute(memory) }
} }
/// Allocates and initializes memory to duplicate the given slice, returning a mutable slice /// Allocates and initializes memory to duplicate the given slice, returning a mutable slice
@ -201,19 +225,21 @@ impl MemArena {
/// Additionally, the allocation will be made with the given byte alignment or /// Additionally, the allocation will be made with the given byte alignment or
/// the type's inherent alignment, whichever is greater. /// the type's inherent alignment, whichever is greater.
pub fn copy_slice_with_alignment<T: Copy>(&self, other: &[T], align: usize) -> &mut [T] { pub fn copy_slice_with_alignment<T: Copy>(&self, other: &[T], align: usize) -> &mut [T] {
let memory = unsafe { self.alloc_array_uninitialized_with_alignment(other.len(), align) }; let memory = self.alloc_array_uninitialized_with_alignment(other.len(), align);
for (v, other) in memory.iter_mut().zip(other.iter()) { for (v, other) in memory.iter_mut().zip(other.iter()) {
*v = *other; unsafe {
*v.as_mut_ptr() = *other;
}
} }
memory unsafe { transmute(memory) }
} }
/// Allocates memory for `len` values of type `T`, returning a mutable slice to it. /// Allocates memory for `len` values of type `T`, returning a mutable slice to it.
/// ///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using! /// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_array_uninitialized<T: Copy>(&self, len: usize) -> &mut [T] { pub fn alloc_array_uninitialized<T: Copy>(&self, len: usize) -> &mut [MaybeUninit<T>] {
assert!(size_of::<T>() > 0); assert!(size_of::<T>() > 0);
let array_mem_size = { let array_mem_size = {
@ -222,9 +248,9 @@ impl MemArena {
aligned_type_size * len aligned_type_size * len
}; };
let memory = self.alloc_raw(array_mem_size, align_of::<T>()) as *mut T; let memory = self.alloc_raw(array_mem_size, align_of::<T>()) as *mut MaybeUninit<T>;
slice::from_raw_parts_mut(memory, len) unsafe { slice::from_raw_parts_mut(memory, len) }
} }
/// Allocates memory for `len` values of type `T`, returning a mutable slice to it. /// Allocates memory for `len` values of type `T`, returning a mutable slice to it.
@ -233,11 +259,11 @@ impl MemArena {
/// the type's inherent alignment, whichever is greater. /// the type's inherent alignment, whichever is greater.
/// ///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using! /// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_array_uninitialized_with_alignment<T: Copy>( pub fn alloc_array_uninitialized_with_alignment<T: Copy>(
&self, &self,
len: usize, len: usize,
align: usize, align: usize,
) -> &mut [T] { ) -> &mut [MaybeUninit<T>] {
assert!(size_of::<T>() > 0); assert!(size_of::<T>() > 0);
let array_mem_size = { let array_mem_size = {
@ -246,9 +272,10 @@ impl MemArena {
aligned_type_size * len aligned_type_size * len
}; };
let memory = self.alloc_raw(array_mem_size, max(align, align_of::<T>())) as *mut T; let memory =
self.alloc_raw(array_mem_size, max(align, align_of::<T>())) as *mut MaybeUninit<T>;
slice::from_raw_parts_mut(memory, len) unsafe { slice::from_raw_parts_mut(memory, len) }
} }
/// Allocates space with a given size and alignment. /// Allocates space with a given size and alignment.
@ -257,7 +284,7 @@ impl MemArena {
/// ///
/// CAUTION: this returns uninitialized memory. Make sure to initialize the /// CAUTION: this returns uninitialized memory. Make sure to initialize the
/// memory after calling. /// memory after calling.
unsafe fn alloc_raw(&self, size: usize, alignment: usize) -> *mut u8 { fn alloc_raw(&self, size: usize, alignment: usize) -> *mut MaybeUninit<u8> {
assert!(alignment > 0); assert!(alignment > 0);
self.stat_space_allocated self.stat_space_allocated
@ -279,10 +306,12 @@ impl MemArena {
// If it will fit in the current block, use the current block. // If it will fit in the current block, use the current block.
if (start_index + size) <= blocks.first().unwrap().capacity() { if (start_index + size) <= blocks.first().unwrap().capacity() {
blocks.first_mut().unwrap().set_len(start_index + size); unsafe {
blocks.first_mut().unwrap().set_len(start_index + size);
}
let block_ptr = blocks.first_mut().unwrap().as_mut_ptr(); let block_ptr = blocks.first_mut().unwrap().as_mut_ptr();
return block_ptr.add(start_index); return unsafe { block_ptr.add(start_index) };
} }
// If it won't fit in the current block, create a new block and use that. // If it won't fit in the current block, create a new block and use that.
else { else {
@ -318,13 +347,15 @@ impl MemArena {
.set(self.stat_space_occupied.get() + size + alignment - 1); .set(self.stat_space_occupied.get() + size + alignment - 1);
blocks.push(Vec::with_capacity(size + alignment - 1)); blocks.push(Vec::with_capacity(size + alignment - 1));
blocks.last_mut().unwrap().set_len(size + alignment - 1); unsafe {
blocks.last_mut().unwrap().set_len(size + alignment - 1);
}
let start_index = let start_index =
alignment_offset(blocks.last().unwrap().as_ptr() as usize, alignment); alignment_offset(blocks.last().unwrap().as_ptr() as usize, alignment);
let block_ptr = blocks.last_mut().unwrap().as_mut_ptr(); let block_ptr = blocks.last_mut().unwrap().as_mut_ptr();
return block_ptr.add(start_index); return unsafe { block_ptr.add(start_index) };
} }
// Otherwise create a new shared block. // Otherwise create a new shared block.
else { else {
@ -339,10 +370,12 @@ impl MemArena {
let start_index = let start_index =
alignment_offset(blocks.first().unwrap().as_ptr() as usize, alignment); alignment_offset(blocks.first().unwrap().as_ptr() as usize, alignment);
blocks.first_mut().unwrap().set_len(start_index + size); unsafe {
blocks.first_mut().unwrap().set_len(start_index + size);
}
let block_ptr = blocks.first_mut().unwrap().as_mut_ptr(); let block_ptr = blocks.first_mut().unwrap().as_mut_ptr();
return block_ptr.add(start_index); return unsafe { block_ptr.add(start_index) };
} }
} }
} }