Moved SAH splitting code into its own function.

This is in prep for the light tree, where we'll want to use that
code.
This commit is contained in:
Nathan Vegdahl 2016-07-30 21:20:01 -07:00
parent 2b05f65024
commit 1f94791b6b
3 changed files with 99 additions and 74 deletions

View File

@ -9,9 +9,9 @@ use boundable::Boundable;
use ray::AccelRay;
use algorithm::{partition, merge_slices_append};
use math::log2_64;
use sah::sah_split;
const BVH_MAX_DEPTH: usize = 64;
const SAH_BIN_COUNT: usize = 13; // Prime numbers work best, for some reason
#[derive(Debug)]
pub struct BVH {
@ -140,79 +140,7 @@ impl BVH {
let (split_index, split_axis) = if (log2_64(objects.len() as u64) as usize) <
(BVH_MAX_DEPTH - depth) {
// SAH splitting, when we have room to play
// Pre-calc SAH div points
let sah_divs = {
let mut sah_divs = [[0.0f32; SAH_BIN_COUNT - 1]; 3];
for d in 0..3 {
let extent = bounds.max.get_n(d) - bounds.min.get_n(d);
for div in 0..(SAH_BIN_COUNT - 1) {
let part = extent * ((div + 1) as f32 / SAH_BIN_COUNT as f32);
sah_divs[d][div] = bounds.min.get_n(d) + part;
}
}
sah_divs
};
// Build SAH bins
let sah_bins = {
let mut sah_bins = [[(BBox::new(), BBox::new(), 0, 0); SAH_BIN_COUNT - 1]; 3];
for obj in objects.iter() {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.into_vector() + tb.max.into_vector()) * 0.5;
for d in 0..3 {
for div in 0..(SAH_BIN_COUNT - 1) {
if centroid.get_n(d) <= sah_divs[d][div] {
sah_bins[d][div].0 |= tb;
sah_bins[d][div].2 += 1;
} else {
sah_bins[d][div].1 |= tb;
sah_bins[d][div].3 += 1;
}
}
}
}
sah_bins
};
// Find best split axis and div point
let (split_axis, div) = {
let mut dim = 0;
let mut div_n = 0.0;
let mut smallest_cost = std::f32::INFINITY;
for d in 0..3 {
for div in 0..(SAH_BIN_COUNT - 1) {
let left_cost = sah_bins[d][div].0.surface_area() *
sah_bins[d][div].2 as f32;
let right_cost = sah_bins[d][div].1.surface_area() *
sah_bins[d][div].3 as f32;
let tot_cost = left_cost + right_cost;
if tot_cost < smallest_cost {
dim = d;
div_n = sah_divs[d][div];
smallest_cost = tot_cost;
}
}
}
(dim, div_n)
};
// Partition
let mut split_i = partition(&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
});
if split_i < 1 {
split_i = 1;
} else if split_i >= objects.len() {
split_i = objects.len() - 1;
}
(split_i, split_axis)
sah_split(objects, &bounder)
} else {
// Balanced splitting, when we don't have room to play
let split_axis = {

View File

@ -29,6 +29,7 @@ mod triangle;
mod surface;
mod light;
mod bvh;
mod sah;
mod light_accel;
mod scene;
mod assembly;

96
src/sah.rs Normal file
View File

@ -0,0 +1,96 @@
use std;
use bbox::BBox;
use lerp::lerp_slice;
use algorithm::partition;
const SAH_BIN_COUNT: usize = 13; // Prime numbers work best, for some reason
/// Takes a slice of boundable objects and partitions them based on the Surface
/// Area Heuristic.
///
/// Returns the index of the partition boundary and the axis that it split on
/// (0 = x, 1 = y, 2 = z).
pub fn sah_split<'a, T, F>(objects: &mut [T], bounder: &F) -> (usize, usize)
where F: Fn(&T) -> &'a [BBox]
{
// Get combined object bounds
let bounds = {
let mut bb = BBox::new();
for obj in &objects[..] {
bb |= lerp_slice(bounder(obj), 0.5);
}
bb
};
// Pre-calc SAH div points
let sah_divs = {
let mut sah_divs = [[0.0f32; SAH_BIN_COUNT - 1]; 3];
for d in 0..3 {
let extent = bounds.max.get_n(d) - bounds.min.get_n(d);
for div in 0..(SAH_BIN_COUNT - 1) {
let part = extent * ((div + 1) as f32 / SAH_BIN_COUNT as f32);
sah_divs[d][div] = bounds.min.get_n(d) + part;
}
}
sah_divs
};
// Build SAH bins
let sah_bins = {
let mut sah_bins = [[(BBox::new(), BBox::new(), 0, 0); SAH_BIN_COUNT - 1]; 3];
for obj in objects.iter() {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.into_vector() + tb.max.into_vector()) * 0.5;
for d in 0..3 {
for div in 0..(SAH_BIN_COUNT - 1) {
if centroid.get_n(d) <= sah_divs[d][div] {
sah_bins[d][div].0 |= tb;
sah_bins[d][div].2 += 1;
} else {
sah_bins[d][div].1 |= tb;
sah_bins[d][div].3 += 1;
}
}
}
}
sah_bins
};
// Find best split axis and div point
let (split_axis, div) = {
let mut dim = 0;
let mut div_n = 0.0;
let mut smallest_cost = std::f32::INFINITY;
for d in 0..3 {
for div in 0..(SAH_BIN_COUNT - 1) {
let left_cost = sah_bins[d][div].0.surface_area() * sah_bins[d][div].2 as f32;
let right_cost = sah_bins[d][div].1.surface_area() * sah_bins[d][div].3 as f32;
let tot_cost = left_cost + right_cost;
if tot_cost < smallest_cost {
dim = d;
div_n = sah_divs[d][div];
smallest_cost = tot_cost;
}
}
}
(dim, div_n)
};
// Partition
let mut split_i = partition(&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
});
if split_i < 1 {
split_i = 1;
} else if split_i >= objects.len() {
split_i = objects.len() - 1;
}
(split_i, split_axis)
}