Broke render job out into its own method.

The left-drift of having it inline was getting cumbersome.
This commit is contained in:
Nathan Vegdahl 2017-05-14 14:51:55 -07:00
parent 922e33ec3f
commit 322627641a
2 changed files with 138 additions and 140 deletions

View File

@ -21,9 +21,7 @@ pub fn lerp<T: Lerp>(a: T, b: T, alpha: f32) -> T {
/// Interpolates a slice of data as if each adjecent pair of elements
/// represent a linear segment.
pub fn lerp_slice<T: Lerp + Copy>(s: &[T], alpha: f32) -> T {
debug_assert!(
s.len() > 0,
);
debug_assert!(s.len() > 0);
debug_assert!(alpha >= 0.0);
debug_assert!(alpha <= 1.0);
@ -43,9 +41,7 @@ pub fn lerp_slice_with<T, F>(s: &[T], alpha: f32, f: F) -> T
where T: Copy,
F: Fn(T, T, f32) -> T
{
debug_assert!(
s.len() > 0,
);
debug_assert!(s.len() > 0);
debug_assert!(alpha >= 0.0);
debug_assert!(alpha <= 1.0);

View File

@ -78,23 +78,11 @@ impl<'a> Renderer<'a> {
let collective_stats = RwLock::new(RenderStats::new());
// Pre-calculate some useful values related to the image plane
let cmpx = 1.0 / self.resolution.0 as f32;
let cmpy = 1.0 / self.resolution.1 as f32;
let min_x = -1.0;
let max_x = 1.0;
let min_y = -(self.resolution.1 as f32 / self.resolution.0 as f32);
let max_y = self.resolution.1 as f32 / self.resolution.0 as f32;
let x_extent = max_x - min_x;
let y_extent = max_y - min_y;
// Set up job queue
let job_queue = MsQueue::new();
// For printing render progress
let total_pixels = self.resolution.0 * self.resolution.1;
let pixels_rendered = Mutex::new(Cell::new(0));
let pixrenref = &pixels_rendered;
// Render
tpool.scoped(
@ -105,128 +93,8 @@ impl<'a> Renderer<'a> {
let ajq = &all_jobs_queued;
let img = &image;
let cstats = &collective_stats;
scope.execute(
move || {
let mut stats = RenderStats::new();
let mut timer = Timer::new();
let mut total_timer = Timer::new();
let mut paths = Vec::new();
let mut rays = Vec::new();
let mut tracer = Tracer::from_assembly(&self.scene.root);
let mut xform_stack = TransformStack::new();
'render_loop: loop {
paths.clear();
rays.clear();
// Get bucket, or exit if no more jobs left
let bucket: BucketJob;
loop {
if let Some(b) = jq.try_pop() {
bucket = b;
break;
} else {
if *ajq.read().unwrap() == true {
break 'render_loop;
}
}
}
timer.tick();
// Generate light paths and initial rays
for y in bucket.y..(bucket.y + bucket.h) {
for x in bucket.x..(bucket.x + bucket.w) {
let offset = hash_u32(((x as u32) << 16) ^ (y as u32), self.seed);
for si in 0..self.spp {
// Calculate image plane x and y coordinates
let (img_x, img_y) = {
let filter_x = fast_logit(halton::sample(4, offset + si as u32), 1.5) + 0.5;
let filter_y = fast_logit(halton::sample(5, offset + si as u32), 1.5) + 0.5;
let samp_x = (filter_x + x as f32) * cmpx;
let samp_y = (filter_y + y as f32) * cmpy;
((samp_x - 0.5) * x_extent, (0.5 - samp_y) * y_extent)
};
// Create the light path and initial ray for this sample
let (path, ray) = LightPath::new(
&self.scene,
(x, y),
(img_x, img_y),
(halton::sample(0, offset + si as u32), halton::sample(1, offset + si as u32)),
halton::sample(2, offset + si as u32),
map_0_1_to_wavelength(halton::sample(3, offset + si as u32)),
offset + si as u32,
);
paths.push(path);
rays.push(ray);
}
}
}
stats.initial_ray_generation_time += timer.tick() as f64;
// Trace the paths!
let mut pi = paths.len();
while pi > 0 {
// Test rays against scene
let isects = tracer.trace(&rays);
stats.trace_time += timer.tick() as f64;
// Determine next rays to shoot based on result
pi = partition_pair(
&mut paths[..pi],
&mut rays[..pi],
|i, path, ray| path.next(&mut xform_stack, &self.scene, &isects[i], &mut *ray),
);
stats.ray_generation_time += timer.tick() as f64;
}
// Calculate color based on ray hits and save to image
{
let min = (bucket.x, bucket.y);
let max = (bucket.x + bucket.w, bucket.y + bucket.h);
let mut img_bucket = img.get_bucket(min, max);
for path in paths.iter() {
let path_col = SpectralSample::from_parts(path.color, path.wavelength);
let mut col = img_bucket.get(path.pixel_co.0, path.pixel_co.1);
col += XYZ::from_spectral_sample(&path_col) / self.spp as f32;
img_bucket.set(path.pixel_co.0, path.pixel_co.1, col);
}
stats.sample_writing_time += timer.tick() as f64;
}
// Print render progress
{
let guard = pixrenref.lock().unwrap();
let mut pr = (*guard).get();
let percentage_old = pr as f64 / total_pixels as f64 * 100.0;
pr += bucket.w as usize * bucket.h as usize;
(*guard).set(pr);
let percentage_new = pr as f64 / total_pixels as f64 * 100.0;
let old_string = format!("{:.2}%", percentage_old);
let new_string = format!("{:.2}%", percentage_new);
if new_string != old_string {
print!("\r{}", new_string);
let _ = io::stdout().flush();
}
}
}
stats.total_time += total_timer.tick() as f64;
ACCEL_TRAV_TIME.with(
|att| {
stats.accel_traversal_time = att.get();
att.set(0.0);
}
);
// Collect stats
cstats.write().unwrap().collect(stats);
}
);
let pixrenref = &pixels_rendered;
scope.execute(move || self.render_job(jq, ajq, img, cstats, pixrenref));
}
// Print initial 0.00% progress
@ -294,6 +162,140 @@ impl<'a> Renderer<'a> {
// Return the rendered image and stats
return (image, *collective_stats.read().unwrap());
}
/// Waits for buckets in the job queue to render and renders them when available.
fn render_job(&self, job_queue: &MsQueue<BucketJob>, all_jobs_queued: &RwLock<bool>, image: &Image, collected_stats: &RwLock<RenderStats>, pixels_rendered: &Mutex<Cell<usize>>) {
let mut stats = RenderStats::new();
let mut timer = Timer::new();
let mut total_timer = Timer::new();
let mut paths = Vec::new();
let mut rays = Vec::new();
let mut tracer = Tracer::from_assembly(&self.scene.root);
let mut xform_stack = TransformStack::new();
// Pre-calculate some useful values related to the image plane
let cmpx = 1.0 / self.resolution.0 as f32;
let cmpy = 1.0 / self.resolution.1 as f32;
let min_x = -1.0;
let max_x = 1.0;
let min_y = -(self.resolution.1 as f32 / self.resolution.0 as f32);
let max_y = self.resolution.1 as f32 / self.resolution.0 as f32;
let x_extent = max_x - min_x;
let y_extent = max_y - min_y;
let total_pixels = self.resolution.0 * self.resolution.1;
// Render
'render_loop: loop {
paths.clear();
rays.clear();
// Get bucket, or exit if no more jobs left
let bucket: BucketJob;
loop {
if let Some(b) = job_queue.try_pop() {
bucket = b;
break;
} else {
if *all_jobs_queued.read().unwrap() == true {
break 'render_loop;
}
}
}
timer.tick();
// Generate light paths and initial rays
for y in bucket.y..(bucket.y + bucket.h) {
for x in bucket.x..(bucket.x + bucket.w) {
let offset = hash_u32(((x as u32) << 16) ^ (y as u32), self.seed);
for si in 0..self.spp {
// Calculate image plane x and y coordinates
let (img_x, img_y) = {
let filter_x = fast_logit(halton::sample(4, offset + si as u32), 1.5) + 0.5;
let filter_y = fast_logit(halton::sample(5, offset + si as u32), 1.5) + 0.5;
let samp_x = (filter_x + x as f32) * cmpx;
let samp_y = (filter_y + y as f32) * cmpy;
((samp_x - 0.5) * x_extent, (0.5 - samp_y) * y_extent)
};
// Create the light path and initial ray for this sample
let (path, ray) = LightPath::new(
&self.scene,
(x, y),
(img_x, img_y),
(halton::sample(0, offset + si as u32), halton::sample(1, offset + si as u32)),
halton::sample(2, offset + si as u32),
map_0_1_to_wavelength(halton::sample(3, offset + si as u32)),
offset + si as u32,
);
paths.push(path);
rays.push(ray);
}
}
}
stats.initial_ray_generation_time += timer.tick() as f64;
// Trace the paths!
let mut pi = paths.len();
while pi > 0 {
// Test rays against scene
let isects = tracer.trace(&rays);
stats.trace_time += timer.tick() as f64;
// Determine next rays to shoot based on result
pi = partition_pair(
&mut paths[..pi],
&mut rays[..pi],
|i, path, ray| path.next(&mut xform_stack, &self.scene, &isects[i], &mut *ray),
);
stats.ray_generation_time += timer.tick() as f64;
}
// Calculate color based on ray hits and save to image
{
let min = (bucket.x, bucket.y);
let max = (bucket.x + bucket.w, bucket.y + bucket.h);
let mut img_bucket = image.get_bucket(min, max);
for path in paths.iter() {
let path_col = SpectralSample::from_parts(path.color, path.wavelength);
let mut col = img_bucket.get(path.pixel_co.0, path.pixel_co.1);
col += XYZ::from_spectral_sample(&path_col) / self.spp as f32;
img_bucket.set(path.pixel_co.0, path.pixel_co.1, col);
}
stats.sample_writing_time += timer.tick() as f64;
}
// Print render progress
{
let guard = pixels_rendered.lock().unwrap();
let mut pr = (*guard).get();
let percentage_old = pr as f64 / total_pixels as f64 * 100.0;
pr += bucket.w as usize * bucket.h as usize;
(*guard).set(pr);
let percentage_new = pr as f64 / total_pixels as f64 * 100.0;
let old_string = format!("{:.2}%", percentage_old);
let new_string = format!("{:.2}%", percentage_new);
if new_string != old_string {
print!("\r{}", new_string);
let _ = io::stdout().flush();
}
}
}
stats.total_time += total_timer.tick() as f64;
ACCEL_TRAV_TIME.with(
|att| {
stats.accel_traversal_time = att.get();
att.set(0.0);
}
);
// Collect stats
collected_stats.write().unwrap().collect(stats);
}
}