Implemented light tree sampling, for better sampling of many lights.

This commit is contained in:
Nathan Vegdahl 2016-07-31 11:14:33 -07:00
parent 1f94791b6b
commit 3e7b142cd8
9 changed files with 371 additions and 15 deletions

View File

@ -3,7 +3,7 @@ use std::collections::HashMap;
use math::{Matrix4x4, Vector}; use math::{Matrix4x4, Vector};
use lerp::lerp_slice; use lerp::lerp_slice;
use bvh::BVH; use bvh::BVH;
use light_accel::{LightAccel, LightArray}; use light_accel::{LightAccel, LightTree};
use boundable::Boundable; use boundable::Boundable;
use surface::{Surface, SurfaceIntersection}; use surface::{Surface, SurfaceIntersection};
use light::LightSource; use light::LightSource;
@ -28,7 +28,7 @@ pub struct Assembly {
pub object_accel: BVH, pub object_accel: BVH,
// Light accel // Light accel
pub light_accel: LightArray, pub light_accel: LightTree,
} }
impl Assembly { impl Assembly {
@ -40,8 +40,9 @@ impl Assembly {
time: f32, time: f32,
intr: &SurfaceIntersection) intr: &SurfaceIntersection)
-> Option<(SpectralSample, Vector, f32)> { -> Option<(SpectralSample, Vector, f32)> {
if let &SurfaceIntersection::Hit { pos, .. } = intr { if let &SurfaceIntersection::Hit { pos, incoming, nor, closure, .. } = intr {
if let Some((light_i, sel_pdf, _)) = self.light_accel.select(n) { if let Some((light_i, sel_pdf, _)) = self.light_accel
.select(incoming, pos, nor, closure.as_surface_closure(), time, n) {
let inst = self.light_instances[light_i]; let inst = self.light_instances[light_i];
match inst.instance_type { match inst.instance_type {
InstanceType::Object => { InstanceType::Object => {
@ -198,20 +199,42 @@ impl AssemblyBuilder {
|inst| &bbs[bis[inst.id]..bis[inst.id + 1]]); |inst| &bbs[bis[inst.id]..bis[inst.id + 1]]);
println!("Assembly BVH Depth: {}", object_accel.tree_depth()); println!("Assembly BVH Depth: {}", object_accel.tree_depth());
// Build light accel // Get list of instances that are for light sources.
let mut light_instances = self.instances.clone(); // TODO: include assemblies that themselves contain light sources.
let light_accel = LightArray::new(&mut light_instances[..], |inst| { let mut light_instances: Vec<_> = self.instances
.iter()
.filter(|inst| {
match inst.instance_type { match inst.instance_type {
InstanceType::Object => { InstanceType::Object => {
if let Object::Light(_) = self.objects[inst.data_index] { if let Object::Light(_) = self.objects[inst.data_index] {
Some((&bbs[bis[inst.id]..bis[inst.id + 1]], 1.0)) true
} else { } else {
None false
} }
} }
_ => None, _ => false,
} }
})
.map(|&a| a)
.collect();
// Build light accel
let light_accel = LightTree::from_objects(&mut light_instances[..], |inst| {
let bounds = &bbs[bis[inst.id]..bis[inst.id + 1]];
let energy = match inst.instance_type {
InstanceType::Object => {
if let Object::Light(ref light) = self.objects[inst.data_index] {
light.approximate_energy()
} else {
0.0
}
}
// TODO: handle assemblies.
_ => 0.0,
};
(bounds, energy)
}); });
Assembly { Assembly {

View File

@ -85,6 +85,14 @@ impl BBox {
((x * y) + (y * z) + (z * x)) * 2.0 ((x * y) + (y * z) + (z * x)) * 2.0
} }
pub fn center(&self) -> Point {
self.min.lerp(self.max, 0.5)
}
pub fn diagonal(&self) -> f32 {
(self.max - self.min).length()
}
} }

View File

@ -68,11 +68,16 @@ pub trait LightSource: Boundable + Debug + Sync {
-> SpectralSample; -> SpectralSample;
/// Returns whether the light has a delta distribution. /// Returns whether the light has a delta distribution.
/// ///
/// If a light has no chance of a ray hitting it through random process /// If a light has no chance of a ray hitting it through random process
/// then it is a delta light source. For example, point light sources, /// then it is a delta light source. For example, point light sources,
/// lights that only emit in a single direction, etc. /// lights that only emit in a single direction, etc.
fn is_delta(&self) -> bool; fn is_delta(&self) -> bool;
/// Returns an approximation of the total energy emitted by the light
/// source. Note that this does not need to be exact: it is used for
/// importance sampling.
fn approximate_energy(&self) -> f32;
} }

View File

@ -156,6 +156,12 @@ impl LightSource for RectangleLight {
fn is_delta(&self) -> bool { fn is_delta(&self) -> bool {
false false
} }
fn approximate_energy(&self) -> f32 {
let color: XYZ = self.colors.iter().fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) /
self.colors.len() as f32;
color.y
}
} }
impl Boundable for RectangleLight { impl Boundable for RectangleLight {

View File

@ -155,6 +155,12 @@ impl LightSource for SphereLight {
fn is_delta(&self) -> bool { fn is_delta(&self) -> bool {
false false
} }
fn approximate_energy(&self) -> f32 {
let color: XYZ = self.colors.iter().fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) /
self.colors.len() as f32;
color.y
}
} }
impl Boundable for SphereLight { impl Boundable for SphereLight {

View File

@ -0,0 +1,200 @@
use bbox::BBox;
use sah::sah_split;
use lerp::lerp_slice;
use algorithm::{partition, merge_slices_append};
use math::{Vector, Point, Normal};
use shading::surface_closure::SurfaceClosure;
use super::LightAccel;
#[derive(Debug)]
pub struct LightTree {
nodes: Vec<Node>,
bounds: Vec<BBox>,
depth: usize,
bounds_cache: Vec<BBox>,
}
#[derive(Debug)]
struct Node {
is_leaf: bool,
bounds_range: (usize, usize),
energy: f32,
child_index: usize,
}
impl LightTree {
pub fn from_objects<'a, T, F>(objects: &mut [T], info_getter: F) -> LightTree
where F: 'a + Fn(&T) -> (&'a [BBox], f32)
{
let mut tree = LightTree {
nodes: Vec::new(),
bounds: Vec::new(),
depth: 0,
bounds_cache: Vec::new(),
};
tree.recursive_build(0, 0, objects, &info_getter);
tree.bounds_cache.clear();
tree.bounds_cache.shrink_to_fit();
tree
}
fn recursive_build<'a, T, F>(&mut self,
offset: usize,
depth: usize,
objects: &mut [T],
info_getter: &F)
-> (usize, (usize, usize))
where F: 'a + Fn(&T) -> (&'a [BBox], f32)
{
let me_index = self.nodes.len();
if objects.len() == 0 {
return (0, (0, 0));
} else if objects.len() == 1 {
// Leaf node
let bi = self.bounds.len();
let (obj_bounds, energy) = info_getter(&objects[0]);
self.bounds.extend(obj_bounds);
self.nodes.push(Node {
is_leaf: true,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: offset,
});
if self.depth < depth {
self.depth = depth;
}
return (me_index, (bi, self.bounds.len()));
} else {
// Not a leaf node
self.nodes.push(Node {
is_leaf: false,
bounds_range: (0, 0),
energy: 0.0,
child_index: 0,
});
// Get combined object bounds
let bounds = {
let mut bb = BBox::new();
for obj in &objects[..] {
bb |= lerp_slice(info_getter(obj).0, 0.5);
}
bb
};
// Partition objects.
let (split_index, split_axis) = sah_split(objects, &|obj_ref| info_getter(obj_ref).0);
// Create child nodes
let (_, c1_bounds) =
self.recursive_build(offset, depth + 1, &mut objects[..split_index], info_getter);
let (c2_index, c2_bounds) = self.recursive_build(offset + split_index,
depth + 1,
&mut objects[split_index..],
info_getter);
// Determine bounds
// TODO: do merging without the temporary vec.
let bi = self.bounds.len();
let mut merged = Vec::new();
merge_slices_append(&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2);
self.bounds.extend(merged.drain(0..));
// Set node
let energy = self.nodes[me_index + 1].energy + self.nodes[c2_index].energy;
self.nodes[me_index] = Node {
is_leaf: false,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: c2_index,
};
return (me_index, (bi, self.bounds.len()));
}
}
}
impl LightAccel for LightTree {
fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)> {
if self.nodes.len() == 0 {
return None;
}
let mut node_index = 0;
let mut tot_prob = 1.0;
let mut n = n;
// Calculates the selection probability for a node
let node_prob = |node_ref: &Node| {
let bounds = &self.bounds[node_ref.bounds_range.0..node_ref.bounds_range.1];
let bbox = lerp_slice(bounds, time);
let d = bbox.center() - pos;
let dist2 = d.length2();
let r = bbox.diagonal() * 0.5;
let r2 = r * r;
let inv_surface_area = 1.0 / r2;
let cos_theta_max = if dist2 <= r2 {
-1.0
} else {
let sin_theta_max2 = (r2 / dist2).min(1.0);
(1.0 - sin_theta_max2).sqrt()
};
// Get the approximate amount of light contribution from the
// composite light source.
let approx_contrib = sc.estimate_eval_over_solid_angle(inc, d, nor, cos_theta_max);
node_ref.energy * inv_surface_area * approx_contrib
};
// Traverse down the tree, keeping track of the relative probabilities
while !self.nodes[node_index].is_leaf {
// Calculate the relative probabilities of the two children
let (p1, p2) = {
let p1 = node_prob(&self.nodes[node_index + 1]);
let p2 = node_prob(&self.nodes[self.nodes[node_index].child_index]);
let total = p1 + p2;
if total <= 0.0 {
(0.5, 0.5)
} else {
(p1 / total, p2 / total)
}
};
if n <= p1 {
tot_prob *= p1;
node_index = node_index + 1;
n /= p1;
} else {
tot_prob *= p2;
node_index = self.nodes[node_index].child_index;
n = (n - p1) / p2;
}
}
// Found our light!
Some((self.nodes[node_index].child_index, tot_prob, n))
}
}

View File

@ -1,8 +1,21 @@
mod light_tree;
use math::{Vector, Point, Normal};
use bbox::BBox; use bbox::BBox;
use shading::surface_closure::SurfaceClosure;
pub use self::light_tree::LightTree;
pub trait LightAccel { pub trait LightAccel {
/// Returns (index_of_light, selection_pdf, whittled_n) /// Returns (index_of_light, selection_pdf, whittled_n)
fn select(&self, n: f32) -> Option<(usize, f32, f32)>; fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)>;
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@ -28,7 +41,16 @@ impl LightArray {
} }
impl LightAccel for LightArray { impl LightAccel for LightArray {
fn select(&self, n: f32) -> Option<(usize, f32, f32)> { fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)> {
let _ = (inc, pos, nor, sc, time); // Not using these, silence warnings
assert!(n >= 0.0 && n <= 1.0); assert!(n >= 0.0 && n <= 1.0);
if self.indices.len() == 0 { if self.indices.len() == 0 {

View File

@ -3,6 +3,7 @@ use color::{XYZ, SpectralSample, Color};
use sampling::cosine_sample_hemisphere; use sampling::cosine_sample_hemisphere;
use std::f32::consts::PI as PI_32; use std::f32::consts::PI as PI_32;
const INV_PI: f32 = 1.0 / PI_32; const INV_PI: f32 = 1.0 / PI_32;
const H_PI: f32 = PI_32 / 2.0;
#[derive(Debug, Copy, Clone)] #[derive(Debug, Copy, Clone)]
pub enum SurfaceClosureUnion { pub enum SurfaceClosureUnion {
@ -57,6 +58,18 @@ pub trait SurfaceClosure {
/// out: The outgoing light direction. /// out: The outgoing light direction.
/// nor: The surface normal of the reflecting/transmitting surface point. /// nor: The surface normal of the reflecting/transmitting surface point.
fn sample_pdf(&self, inc: Vector, out: Vector, nor: Normal) -> f32; fn sample_pdf(&self, inc: Vector, out: Vector, nor: Normal) -> f32;
/// Returns an estimate of the sum total energy that evaluate() would return
/// when 'out' is evaluated over a circular solid angle.
/// This is used for importance sampling, so does not need to be exact,
/// but it does need to be non-zero anywhere that an exact solution would
/// be non-zero.
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32;
} }
@ -174,6 +187,18 @@ impl SurfaceClosure for EmitClosure {
1.0 1.0
} }
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32 {
let _ = (inc, out, nor, cos_theta); // Not using these, silence warning
// TODO: what to do here?
unimplemented!()
}
} }
@ -241,4 +266,63 @@ impl SurfaceClosure for LambertClosure {
dot(nn, v).max(0.0) * INV_PI dot(nn, v).max(0.0) * INV_PI
} }
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32 {
assert!(cos_theta >= -1.0 && cos_theta <= 1.0);
// Analytically calculates lambert shading from a uniform light source
// subtending a circular solid angle.
// Only works for solid angle subtending equal to or less than a hemisphere.
//
// Formula taken from "Area Light Sources for Real-Time Graphics"
// by John M. Snyder
fn sphere_lambert(nlcos: f32, rcos: f32) -> f32 {
assert!(nlcos >= -1.0 && nlcos <= 1.0);
assert!(rcos >= 0.0 && rcos <= 1.0);
let nlsin: f32 = (1.0 - (nlcos * nlcos)).sqrt();
let rsin2: f32 = 1.0 - (rcos * rcos);
let rsin: f32 = rsin2.sqrt();
let ysin: f32 = rcos / nlsin;
let ycos2: f32 = 1.0 - (ysin * ysin);
let ycos: f32 = ycos2.sqrt();
let g: f32 = (-2.0 * nlsin * rcos * ycos) + H_PI - ysin.asin() + (ysin * ycos);
let h: f32 = nlcos * ((ycos * (rsin2 - ycos2).sqrt()) + (rsin2 * (ycos / rsin).asin()));
let nl: f32 = nlcos.acos();
let r: f32 = rcos.acos();
if nl < (H_PI - r) {
nlcos * rsin2
} else if nl < H_PI {
(nlcos * rsin2) + g - h
} else if nl < (H_PI + r) {
(g + h) * INV_PI
} else {
0.0
}
}
if cos_theta < 0.0 {
return 1.0;
} else {
let v = out.normalized();
let nn = if dot(nor.into_vector(), inc) <= 0.0 {
nor.normalized()
} else {
-nor.normalized()
}
.into_vector();
let cos_nv = dot(nn, v);
return sphere_lambert(cos_nv, cos_theta);
}
}
} }

View File

@ -1,4 +1,6 @@
//- Implement support for multiple light sources in a scene. //- Implement support for multiple light sources in a scene.
//- Implement light tree.
- Implement proper light source selection for hierarchical instancing.
- Implement shader parsing, and use in rendering. - Implement shader parsing, and use in rendering.
- Add gui display of rendering in progress. - Add gui display of rendering in progress.
- Unit tests for scene parsing. - Unit tests for scene parsing.