Updated MicropolyBatch for new traversal code etc.
This commit is contained in:
parent
4adc81b66b
commit
41c2174d59
|
@ -1,5 +1,7 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
|
@ -8,12 +10,14 @@ use crate::{
|
|||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::{cross, dot, Matrix4x4, Normal, Point},
|
||||
ray::{RayBatch, RayStack, RayTask}
|
||||
shading::surface_closure::SurfaceClosure,
|
||||
ray::{RayBatch, RayStack},
|
||||
shading::{SimpleSurfaceShader, SurfaceShader},
|
||||
};
|
||||
|
||||
use super::{triangle, SurfaceIntersection, SurfaceIntersectionData};
|
||||
|
||||
const MAX_LEAF_TRIANGLE_COUNT: usize = 3;
|
||||
|
||||
/// This is the core surface primitive for rendering: all surfaces are
|
||||
/// ultimately processed into pre-shaded micropolygon batches for rendering.
|
||||
///
|
||||
|
@ -29,7 +33,7 @@ pub struct MicropolyBatch<'a> {
|
|||
normals: &'a [Normal],
|
||||
|
||||
// Per-vertex shading data.
|
||||
vertex_closures: &'a [SurfaceClosure],
|
||||
vertex_closures: &'a [SimpleSurfaceShader],
|
||||
|
||||
// Micro-triangle indices. Each element of the tuple specifies the index
|
||||
// of a vertex, which indexes into all of the arrays above.
|
||||
|
@ -42,60 +46,100 @@ pub struct MicropolyBatch<'a> {
|
|||
impl<'a> MicropolyBatch<'a> {
|
||||
pub fn from_verts_and_indices<'b>(
|
||||
arena: &'b MemArena,
|
||||
geo_time_sample_count: usize,
|
||||
verts: &[Point],
|
||||
vert_normals: &[Normal],
|
||||
vert_closures: &[SurfaceClosure],
|
||||
triangles: &[(u32, u32, u32)],
|
||||
verts: &[Vec<Point>],
|
||||
vert_normals: &[Vec<Normal>],
|
||||
tri_indices: &[(usize, usize, usize)],
|
||||
) -> MicropolyBatch<'b> {
|
||||
let vert_count = verts[0].len();
|
||||
let time_sample_count = verts.len();
|
||||
|
||||
// Copy verts over to a contiguous area of memory, reorganizing them
|
||||
// so that each vertices' time samples are contiguous in memory.
|
||||
let vertices = {
|
||||
let vertices = arena.alloc_array_uninitialized(vert_count * time_sample_count);
|
||||
|
||||
for vi in 0..vert_count {
|
||||
for ti in 0..time_sample_count {
|
||||
unsafe {
|
||||
*vertices[(vi * time_sample_count) + ti].as_mut_ptr() = verts[ti][vi];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe { std::mem::transmute(vertices) }
|
||||
};
|
||||
|
||||
// Copy vertex normals, if any, organizing them the same as vertices
|
||||
// above.
|
||||
let normals = {
|
||||
let normals = arena.alloc_array_uninitialized(vert_count * time_sample_count);
|
||||
|
||||
for vi in 0..vert_count {
|
||||
for ti in 0..time_sample_count {
|
||||
unsafe {
|
||||
*normals[(vi * time_sample_count) + ti].as_mut_ptr() = vert_normals[ti][vi];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe { std::mem::transmute(&normals[..]) }
|
||||
};
|
||||
|
||||
// Copy triangle vertex indices over, appending the triangle index itself to the tuple
|
||||
let indices: &mut [(u32, u32, u32)] = {
|
||||
let indices = arena.alloc_array_uninitialized(tri_indices.len());
|
||||
for (i, tri_i) in tri_indices.iter().enumerate() {
|
||||
unsafe {
|
||||
*indices[i].as_mut_ptr() = (tri_i.0 as u32, tri_i.2 as u32, tri_i.1 as u32);
|
||||
}
|
||||
}
|
||||
unsafe { std::mem::transmute(indices) }
|
||||
};
|
||||
|
||||
// Create bounds array for use during BVH construction
|
||||
let bounds = {
|
||||
let mut bounds = Vec::with_capacity(triangles.len() * geo_time_sample_count);
|
||||
for tri in triangles {
|
||||
for ti in 0..geo_time_sample_count {
|
||||
let p0 = verts[(tri.0 as usize * geo_time_sample_count) + ti];
|
||||
let p1 = verts[(tri.1 as usize * geo_time_sample_count) + ti];
|
||||
let p2 = verts[(tri.2 as usize * geo_time_sample_count) + ti];
|
||||
let (bounds, bounds_map) = {
|
||||
let mut bounds = Vec::with_capacity(indices.len() * time_sample_count);
|
||||
let mut bounds_map = HashMap::new();
|
||||
|
||||
for tri in tri_indices {
|
||||
let start = bounds.len();
|
||||
for ti in 0..time_sample_count {
|
||||
let p0 = verts[ti][tri.0];
|
||||
let p1 = verts[ti][tri.1];
|
||||
let p2 = verts[ti][tri.2];
|
||||
let minimum = p0.min(p1.min(p2));
|
||||
let maximum = p0.max(p1.max(p2));
|
||||
bounds.push(BBox::from_points(minimum, maximum));
|
||||
}
|
||||
let end = bounds.len();
|
||||
bounds_map.insert((tri.0 as u32, tri.1 as u32, tri.2 as u32), (start, end));
|
||||
}
|
||||
bounds
|
||||
(bounds, bounds_map)
|
||||
};
|
||||
|
||||
// Create an array of triangle indices for use during the BVH build.
|
||||
let mut tmp_indices: Vec<_> = (0u32..(triangles.len() as u32)).collect();
|
||||
|
||||
// Build BVH
|
||||
let accel = BVH4::from_objects(arena, &mut tmp_indices[..], 3, |index| {
|
||||
&bounds[(*index as usize * geo_time_sample_count)
|
||||
..((*index as usize + 1) * geo_time_sample_count)]
|
||||
let accel = BVH4::from_objects(arena, &mut indices[..], MAX_LEAF_TRIANGLE_COUNT, |tri| {
|
||||
let (start, end) = bounds_map[tri];
|
||||
&bounds[start..end]
|
||||
});
|
||||
|
||||
// Copy triangle vertex indices over in the post-bvh-build order.
|
||||
let indices = {
|
||||
let indices = unsafe { arena.alloc_array_uninitialized(triangles.len()) };
|
||||
for (i, tmp_i) in tmp_indices.iter().enumerate() {
|
||||
indices[i] = triangles[*tmp_i as usize];
|
||||
}
|
||||
indices
|
||||
};
|
||||
|
||||
MicropolyBatch {
|
||||
time_sample_count: geo_time_sample_count,
|
||||
vertices: arena.copy_slice(verts),
|
||||
normals: arena.copy_slice(vert_normals),
|
||||
|
||||
vertex_closures: arena.copy_slice(vert_closures),
|
||||
|
||||
time_sample_count: time_sample_count,
|
||||
vertices: vertices,
|
||||
normals: normals,
|
||||
vertex_closures: &[],
|
||||
indices: indices,
|
||||
|
||||
accel: accel,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for MicropolyBatch<'a> {
|
||||
fn bounds(&self) -> &[BBox] {
|
||||
self.accel.bounds()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> MicropolyBatch<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
|
@ -106,156 +150,195 @@ impl<'a> MicropolyBatch<'a> {
|
|||
) {
|
||||
// Precalculate transform for non-motion blur cases
|
||||
let static_mat_space = if space.len() == 1 {
|
||||
space[0].inverse()
|
||||
lerp_slice(space, 0.0).inverse()
|
||||
} else {
|
||||
Matrix4x4::new()
|
||||
};
|
||||
|
||||
self.accel
|
||||
.traverse(rays, ray_stack, self.indices, |tri_indices, rs| {
|
||||
// For static triangles with static transforms, cache them.
|
||||
let is_cached = self.time_sample_count == 1 && space.len() <= 1;
|
||||
let mut tri = if is_cached {
|
||||
let tri = (
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
);
|
||||
if space.is_empty() {
|
||||
tri
|
||||
} else {
|
||||
(
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
)
|
||||
}
|
||||
} else {
|
||||
unsafe { std::mem::uninitialized() }
|
||||
};
|
||||
.traverse(rays, ray_stack, |idx_range, rays, ray_stack| {
|
||||
let tri_count = idx_range.end - idx_range.start;
|
||||
|
||||
// Test each ray against the current triangle.
|
||||
for r in rs {
|
||||
let wr = &wrays[r.id as usize];
|
||||
// Build the triangle cache if we can!
|
||||
let is_cached = ray_stack.ray_count_in_next_task() >= tri_count
|
||||
&& self.time_sample_count == 1
|
||||
&& space.len() <= 1;
|
||||
let mut tri_cache = [std::mem::MaybeUninit::uninit(); MAX_LEAF_TRIANGLE_COUNT];
|
||||
if is_cached {
|
||||
for tri_idx in idx_range.clone() {
|
||||
let i = tri_idx - idx_range.start;
|
||||
let tri_indices = self.indices[tri_idx];
|
||||
|
||||
// Get triangle if necessary
|
||||
if !is_cached {
|
||||
tri = if self.time_sample_count == 1 {
|
||||
// No deformation motion blur, so fast-path it.
|
||||
(
|
||||
// For static triangles with static transforms, cache them.
|
||||
unsafe {
|
||||
*tri_cache[i].as_mut_ptr() = (
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
)
|
||||
} else {
|
||||
// Deformation motion blur, need to interpolate.
|
||||
let p0_slice = &self.vertices[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let p1_slice = &self.vertices[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let p2_slice = &self.vertices[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let p0 = lerp_slice(p0_slice, wr.time);
|
||||
let p1 = lerp_slice(p1_slice, wr.time);
|
||||
let p2 = lerp_slice(p2_slice, wr.time);
|
||||
|
||||
(p0, p1, p2)
|
||||
};
|
||||
}
|
||||
|
||||
// Transform triangle if necessary, and get transform space.
|
||||
let mat_space = if !space.is_empty() {
|
||||
if space.len() > 1 {
|
||||
// Per-ray transform, for motion blur
|
||||
let mat_space = lerp_slice(space, wr.time).inverse();
|
||||
tri = (tri.0 * mat_space, tri.1 * mat_space, tri.2 * mat_space);
|
||||
mat_space
|
||||
} else {
|
||||
// Same transform for all rays
|
||||
if !is_cached {
|
||||
tri = (
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
);
|
||||
}
|
||||
static_mat_space
|
||||
}
|
||||
} else {
|
||||
// No transforms
|
||||
Matrix4x4::new()
|
||||
};
|
||||
|
||||
// Test ray against triangle
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(wr, tri) {
|
||||
if t < r.max_t {
|
||||
if r.is_occlusion() {
|
||||
isects[r.id as usize] = SurfaceIntersection::Occlude;
|
||||
r.mark_done();
|
||||
} else {
|
||||
// Calculate intersection point and error magnitudes
|
||||
let (pos, pos_err) = triangle::surface_point(tri, (b0, b1, b2));
|
||||
|
||||
// Calculate geometric surface normal
|
||||
let geo_normal = cross(tri.0 - tri.1, tri.0 - tri.2).into_normal();
|
||||
|
||||
// Calculate interpolated surface normal
|
||||
let shading_normal = {
|
||||
let n0_slice = &self.normals[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let n1_slice = &self.normals[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let n2_slice = &self.normals[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let n0 = lerp_slice(n0_slice, wr.time).normalized();
|
||||
let n1 = lerp_slice(n1_slice, wr.time).normalized();
|
||||
let n2 = lerp_slice(n2_slice, wr.time).normalized();
|
||||
|
||||
let s_nor = ((n0 * b0) + (n1 * b1) + (n2 * b2)) * mat_space;
|
||||
if dot(s_nor, geo_normal) >= 0.0 {
|
||||
s_nor
|
||||
} else {
|
||||
-s_nor
|
||||
}
|
||||
};
|
||||
|
||||
// Calculate surface closure
|
||||
// TODO: use interpolation between the vertices
|
||||
let surface_closure = self.vertex_closures[tri_indices.0 as usize];
|
||||
|
||||
// Fill in intersection data
|
||||
isects[r.id as usize] = SurfaceIntersection::Hit {
|
||||
intersection_data: SurfaceIntersectionData {
|
||||
incoming: wr.dir,
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
},
|
||||
closure: surface_closure,
|
||||
};
|
||||
r.max_t = t;
|
||||
);
|
||||
if !space.is_empty() {
|
||||
(*tri_cache[i].as_mut_ptr()).0 =
|
||||
(*tri_cache[i].as_mut_ptr()).0 * static_mat_space;
|
||||
(*tri_cache[i].as_mut_ptr()).1 =
|
||||
(*tri_cache[i].as_mut_ptr()).1 * static_mat_space;
|
||||
(*tri_cache[i].as_mut_ptr()).2 =
|
||||
(*tri_cache[i].as_mut_ptr()).2 * static_mat_space;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test each ray against the triangles.
|
||||
ray_stack.do_next_task(|ray_idx| {
|
||||
let ray_idx = ray_idx as usize;
|
||||
|
||||
if rays.is_done(ray_idx) {
|
||||
return;
|
||||
}
|
||||
|
||||
let ray_time = rays.time(ray_idx);
|
||||
|
||||
// Calculate the ray space, if necessary.
|
||||
let mat_space = if space.len() > 1 {
|
||||
// Per-ray transform, for motion blur
|
||||
lerp_slice(space, ray_time).inverse()
|
||||
} else {
|
||||
static_mat_space
|
||||
};
|
||||
|
||||
// Iterate through the triangles and test the ray against them.
|
||||
let mut non_shadow_hit = false;
|
||||
let mut hit_tri = std::mem::MaybeUninit::uninit();
|
||||
let mut hit_tri_indices = std::mem::MaybeUninit::uninit();
|
||||
let mut hit_tri_data = std::mem::MaybeUninit::uninit();
|
||||
let ray_pre = triangle::RayTriPrecompute::new(rays.dir(ray_idx));
|
||||
for tri_idx in idx_range.clone() {
|
||||
let tri_indices = self.indices[tri_idx];
|
||||
|
||||
// Get triangle if necessary
|
||||
let tri = if is_cached {
|
||||
let i = tri_idx - idx_range.start;
|
||||
unsafe { tri_cache[i].assume_init() }
|
||||
} else {
|
||||
let mut tri = if self.time_sample_count == 1 {
|
||||
// No deformation motion blur, so fast-path it.
|
||||
(
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
)
|
||||
} else {
|
||||
// Deformation motion blur, need to interpolate.
|
||||
let p0_slice = &self.vertices[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let p1_slice = &self.vertices[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let p2_slice = &self.vertices[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let p0 = lerp_slice(p0_slice, ray_time);
|
||||
let p1 = lerp_slice(p1_slice, ray_time);
|
||||
let p2 = lerp_slice(p2_slice, ray_time);
|
||||
|
||||
(p0, p1, p2)
|
||||
};
|
||||
|
||||
if !space.is_empty() {
|
||||
tri.0 = tri.0 * mat_space;
|
||||
tri.1 = tri.1 * mat_space;
|
||||
tri.2 = tri.2 * mat_space;
|
||||
}
|
||||
|
||||
tri
|
||||
};
|
||||
|
||||
// Test ray against triangle
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(
|
||||
rays.orig(ray_idx),
|
||||
ray_pre,
|
||||
rays.max_t(ray_idx),
|
||||
tri,
|
||||
) {
|
||||
if rays.is_occlusion(ray_idx) {
|
||||
isects[ray_idx] = SurfaceIntersection::Occlude;
|
||||
rays.mark_done(ray_idx);
|
||||
break;
|
||||
} else {
|
||||
non_shadow_hit = true;
|
||||
rays.set_max_t(ray_idx, t);
|
||||
unsafe {
|
||||
*hit_tri.as_mut_ptr() = tri;
|
||||
*hit_tri_indices.as_mut_ptr() = tri_indices;
|
||||
*hit_tri_data.as_mut_ptr() = (t, b0, b1, b2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate intersection data if necessary.
|
||||
if non_shadow_hit {
|
||||
let hit_tri = unsafe { hit_tri.assume_init() };
|
||||
let hit_tri_indices = unsafe { hit_tri_indices.assume_init() };
|
||||
let (t, b0, b1, b2) = unsafe { hit_tri_data.assume_init() };
|
||||
|
||||
// Calculate intersection point and error magnitudes
|
||||
let (pos, pos_err) = triangle::surface_point(hit_tri, (b0, b1, b2));
|
||||
|
||||
// Calculate geometric surface normal
|
||||
let geo_normal =
|
||||
cross(hit_tri.0 - hit_tri.1, hit_tri.0 - hit_tri.2).into_normal();
|
||||
|
||||
// Calculate interpolated surface normal
|
||||
let shading_normal = {
|
||||
let n0_slice = &self.normals[(hit_tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let n1_slice = &self.normals[(hit_tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let n2_slice = &self.normals[(hit_tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let n0 = lerp_slice(n0_slice, ray_time).normalized();
|
||||
let n1 = lerp_slice(n1_slice, ray_time).normalized();
|
||||
let n2 = lerp_slice(n2_slice, ray_time).normalized();
|
||||
|
||||
let s_nor = ((n0 * b0) + (n1 * b1) + (n2 * b2)) * mat_space;
|
||||
if dot(s_nor, geo_normal) >= 0.0 {
|
||||
s_nor
|
||||
} else {
|
||||
-s_nor
|
||||
}
|
||||
};
|
||||
|
||||
// Calculate interpolated surface closure.
|
||||
// TODO: actually interpolate.
|
||||
let closure = self.vertex_closures
|
||||
[hit_tri_indices.0 as usize * self.time_sample_count];
|
||||
|
||||
let intersection_data = SurfaceIntersectionData {
|
||||
incoming: rays.dir(ray_idx),
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
};
|
||||
|
||||
// Fill in intersection data
|
||||
isects[ray_idx] = SurfaceIntersection::Hit {
|
||||
intersection_data: intersection_data,
|
||||
closure: closure.shade(&intersection_data, ray_time),
|
||||
};
|
||||
}
|
||||
});
|
||||
ray_stack.pop_task();
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for MicropolyBatch<'a> {
|
||||
fn bounds(&self) -> &[BBox] {
|
||||
self.accel.bounds()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
// pub mod micropoly_batch;
|
||||
pub mod micropoly_batch;
|
||||
pub mod triangle;
|
||||
pub mod triangle_mesh;
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user