commit
452a29a95c
7
Cargo.lock
generated
7
Cargo.lock
generated
|
@ -100,6 +100,11 @@ dependencies = [
|
|||
name = "color"
|
||||
version = "0.1.0"
|
||||
|
||||
[[package]]
|
||||
name = "copy_in_place"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "crossbeam"
|
||||
version = "0.3.2"
|
||||
|
@ -239,6 +244,7 @@ dependencies = [
|
|||
"bvh_order 0.1.0",
|
||||
"clap 2.33.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"color 0.1.0",
|
||||
"copy_in_place 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"crossbeam 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"float4 0.1.0",
|
||||
"half 1.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
|
@ -557,6 +563,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||
"checksum cfg-if 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)" = "b486ce3ccf7ffd79fdeb678eac06a9e6c09fc88d33836340becb8fffe87c5e33"
|
||||
"checksum clap 2.33.0 (registry+https://github.com/rust-lang/crates.io-index)" = "5067f5bb2d80ef5d68b4c87db81601f0b75bca627bc2ef76b141d7b846a3c6d9"
|
||||
"checksum cloudabi 0.0.3 (registry+https://github.com/rust-lang/crates.io-index)" = "ddfc5b9aa5d4507acaf872de71051dfd0e309860e88966e1051e462a077aac4f"
|
||||
"checksum copy_in_place 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "b792a46b1ef44bb5e9a04721d34e186522431be965a283437107843d62ddbaad"
|
||||
"checksum crossbeam 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "24ce9782d4d5c53674646a6a4c1863a21a8fc0cb649b3c94dfc16e45071dea19"
|
||||
"checksum fnv 1.0.6 (registry+https://github.com/rust-lang/crates.io-index)" = "2fad85553e09a6f881f739c29f0b00b0f01357c743266d478b68951ce23285f3"
|
||||
"checksum fuchsia-cprng 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "a06f77d526c1a601b7c4cdd98f54b5eaabffc14d5f2f0296febdc7f357c6d3ba"
|
||||
|
|
|
@ -25,6 +25,7 @@ debug = true
|
|||
# Crates.io dependencies
|
||||
base64 = "0.9"
|
||||
clap = "2.30"
|
||||
copy_in_place = "0.2.0"
|
||||
crossbeam = "0.3"
|
||||
half = "1.0"
|
||||
lazy_static = "1.0"
|
||||
|
|
|
@ -1,36 +1,52 @@
|
|||
//! This BVH4 implementation is based on the ideas from the paper
|
||||
//! "Efficient Ray Tracing Kernels for Modern CPU Architectures"
|
||||
//! by Fuetterling et al.
|
||||
|
||||
#![allow(dead_code)]
|
||||
|
||||
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
|
||||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
algorithm::partition, bbox::BBox, boundable::Boundable, lerp::lerp_slice, ray::AccelRay,
|
||||
timer::Timer,
|
||||
bbox::BBox,
|
||||
bbox4::BBox4,
|
||||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::Vector,
|
||||
ray::{RayBatch, RayStack},
|
||||
};
|
||||
|
||||
use super::{
|
||||
bvh_base::{BVHBase, BVHBaseNode, BVH_MAX_DEPTH},
|
||||
ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME,
|
||||
ACCEL_NODE_RAY_TESTS,
|
||||
};
|
||||
|
||||
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
|
||||
use float4::Bool4;
|
||||
|
||||
pub fn ray_code(dir: Vector) -> usize {
|
||||
let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0];
|
||||
ray_sign_is_neg[0] as usize
|
||||
+ ((ray_sign_is_neg[1] as usize) << 1)
|
||||
+ ((ray_sign_is_neg[2] as usize) << 2)
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct BVH4<'a> {
|
||||
root: Option<&'a BVH4Node<'a>>,
|
||||
depth: usize,
|
||||
node_count: usize,
|
||||
_bounds: Option<&'a [BBox]>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum BVH4Node<'a> {
|
||||
Inner {
|
||||
traversal_code: u8,
|
||||
bounds_start: &'a BBox,
|
||||
bounds_len: u16,
|
||||
Internal {
|
||||
bounds: &'a [BBox4],
|
||||
children: &'a [BVH4Node<'a>],
|
||||
traversal_code: u8,
|
||||
},
|
||||
|
||||
Leaf {
|
||||
bounds_start: &'a BBox,
|
||||
bounds_len: u16,
|
||||
object_range: (usize, usize),
|
||||
},
|
||||
}
|
||||
|
@ -45,19 +61,32 @@ impl<'a> BVH4<'a> {
|
|||
where
|
||||
F: 'b + Fn(&T) -> &'b [BBox],
|
||||
{
|
||||
if objects.is_empty() {
|
||||
if objects.len() == 0 {
|
||||
BVH4 {
|
||||
root: None,
|
||||
depth: 0,
|
||||
node_count: 0,
|
||||
_bounds: None,
|
||||
}
|
||||
} else {
|
||||
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
|
||||
|
||||
let root = unsafe { arena.alloc_uninitialized::<BVH4Node>() };
|
||||
BVH4::construct_from_base(arena, &base, base.root_node_index(), root);
|
||||
let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) };
|
||||
let node_count = BVH4::construct_from_base(
|
||||
arena,
|
||||
&base,
|
||||
&base.nodes[base.root_node_index()],
|
||||
fill_node,
|
||||
);
|
||||
|
||||
BVH4 {
|
||||
root: Some(root),
|
||||
depth: base.depth,
|
||||
root: Some(fill_node),
|
||||
depth: (base.depth / 2) + 1,
|
||||
node_count: node_count,
|
||||
_bounds: {
|
||||
let range = base.nodes[base.root_node_index()].bounds_range();
|
||||
Some(arena.copy_slice(&base.bounds[range.0..range.1]))
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -66,135 +95,85 @@ impl<'a> BVH4<'a> {
|
|||
self.depth
|
||||
}
|
||||
|
||||
pub fn traverse<T, F>(&self, rays: &mut [AccelRay], objects: &[T], mut obj_ray_test: F)
|
||||
pub fn traverse<F>(&self, rays: &mut RayBatch, ray_stack: &mut RayStack, mut obj_ray_test: F)
|
||||
where
|
||||
F: FnMut(&T, &mut [AccelRay]),
|
||||
F: FnMut(std::ops::Range<usize>, &mut RayBatch, &mut RayStack),
|
||||
{
|
||||
if self.root.is_none() {
|
||||
return;
|
||||
}
|
||||
|
||||
let mut timer = Timer::new();
|
||||
let mut trav_time: f64 = 0.0;
|
||||
let mut node_tests: u64 = 0;
|
||||
|
||||
let traversal_table = {
|
||||
let ray_sign_is_neg = [
|
||||
rays[0].dir_inv.x() < 0.0,
|
||||
rays[0].dir_inv.y() < 0.0,
|
||||
rays[0].dir_inv.z() < 0.0,
|
||||
];
|
||||
let ray_code = ray_sign_is_neg[0] as usize
|
||||
+ ((ray_sign_is_neg[1] as usize) << 1)
|
||||
+ ((ray_sign_is_neg[2] as usize) << 2);
|
||||
&TRAVERSAL_TABLE[ray_code]
|
||||
};
|
||||
let traversal_table =
|
||||
&TRAVERSAL_TABLE[ray_code(rays.dir_inv_local(ray_stack.next_task_ray_idx(0)))];
|
||||
|
||||
// +2 of max depth for root and last child
|
||||
let mut node_stack = [self.root.unwrap(); (BVH_MAX_DEPTH * 3) + 2];
|
||||
let mut ray_i_stack = [rays.len(); (BVH_MAX_DEPTH * 3) + 2];
|
||||
let mut stack_ptr = 1;
|
||||
|
||||
while stack_ptr > 0 {
|
||||
node_tests += ray_i_stack[stack_ptr] as u64;
|
||||
match *node_stack[stack_ptr] {
|
||||
BVH4Node::Inner {
|
||||
traversal_code,
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
match node_stack[stack_ptr] {
|
||||
&BVH4Node::Internal {
|
||||
bounds,
|
||||
children,
|
||||
traversal_code,
|
||||
} => {
|
||||
let bounds =
|
||||
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
|
||||
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
|
||||
(!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r)
|
||||
});
|
||||
if part > 0 {
|
||||
let order_code = traversal_table[traversal_code as usize];
|
||||
match children.len() {
|
||||
4 => {
|
||||
let i4 = ((order_code >> 6) & 0b11) as usize;
|
||||
let i3 = ((order_code >> 4) & 0b11) as usize;
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
node_tests += ray_stack.ray_count_in_next_task() as u64;
|
||||
let mut all_hits = Bool4::new_false();
|
||||
|
||||
ray_i_stack[stack_ptr] = part;
|
||||
ray_i_stack[stack_ptr + 1] = part;
|
||||
ray_i_stack[stack_ptr + 2] = part;
|
||||
ray_i_stack[stack_ptr + 3] = part;
|
||||
|
||||
node_stack[stack_ptr] = &children[i4];
|
||||
node_stack[stack_ptr + 1] = &children[i3];
|
||||
node_stack[stack_ptr + 2] = &children[i2];
|
||||
node_stack[stack_ptr + 3] = &children[i1];
|
||||
|
||||
stack_ptr += 3;
|
||||
}
|
||||
3 => {
|
||||
let i3 = ((order_code >> 4) & 0b11) as usize;
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
|
||||
ray_i_stack[stack_ptr] = part;
|
||||
ray_i_stack[stack_ptr + 1] = part;
|
||||
ray_i_stack[stack_ptr + 2] = part;
|
||||
|
||||
node_stack[stack_ptr] = &children[i3];
|
||||
node_stack[stack_ptr + 1] = &children[i2];
|
||||
node_stack[stack_ptr + 2] = &children[i1];
|
||||
|
||||
stack_ptr += 2;
|
||||
}
|
||||
2 => {
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
|
||||
ray_i_stack[stack_ptr] = part;
|
||||
ray_i_stack[stack_ptr + 1] = part;
|
||||
|
||||
node_stack[stack_ptr] = &children[i2];
|
||||
node_stack[stack_ptr + 1] = &children[i1];
|
||||
|
||||
stack_ptr += 1;
|
||||
}
|
||||
_ => unreachable!(),
|
||||
// Ray testing
|
||||
ray_stack.pop_do_next_task_and_push_rays(children.len(), |ray_idx| {
|
||||
if rays.is_done(ray_idx) {
|
||||
Bool4::new_false()
|
||||
} else {
|
||||
let hits = if bounds.len() == 1 {
|
||||
bounds[0].intersect_ray(
|
||||
rays.orig_local(ray_idx),
|
||||
rays.dir_inv_local(ray_idx),
|
||||
rays.max_t(ray_idx),
|
||||
)
|
||||
} else {
|
||||
lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
|
||||
rays.orig_local(ray_idx),
|
||||
rays.dir_inv_local(ray_idx),
|
||||
rays.max_t(ray_idx),
|
||||
)
|
||||
};
|
||||
all_hits = all_hits | hits;
|
||||
hits
|
||||
}
|
||||
});
|
||||
|
||||
// If there were any intersections, create tasks.
|
||||
if !all_hits.is_all_false() {
|
||||
let order_code = traversal_table[traversal_code as usize];
|
||||
let mut lane_count = 0;
|
||||
let mut i = children.len() as u8;
|
||||
while i > 0 {
|
||||
i -= 1;
|
||||
let child_i = ((order_code >> (i * 2)) & 3) as usize;
|
||||
if ray_stack.push_lane_to_task(child_i) {
|
||||
node_stack[stack_ptr + lane_count] = &children[child_i];
|
||||
lane_count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
stack_ptr += lane_count - 1;
|
||||
} else {
|
||||
stack_ptr -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
BVH4Node::Leaf {
|
||||
object_range,
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
} => {
|
||||
let bounds =
|
||||
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
|
||||
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
|
||||
(!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r)
|
||||
});
|
||||
|
||||
trav_time += timer.tick() as f64;
|
||||
|
||||
if part > 0 {
|
||||
for obj in &objects[object_range.0..object_range.1] {
|
||||
obj_ray_test(obj, &mut rays[..part]);
|
||||
}
|
||||
}
|
||||
|
||||
timer.tick();
|
||||
&BVH4Node::Leaf { object_range } => {
|
||||
// Do the ray tests.
|
||||
obj_ray_test(object_range.0..object_range.1, rays, ray_stack);
|
||||
|
||||
stack_ptr -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
trav_time += timer.tick() as f64;
|
||||
ACCEL_TRAV_TIME.with(|att| {
|
||||
let v = att.get();
|
||||
att.set(v + trav_time);
|
||||
});
|
||||
ACCEL_NODE_RAY_TESTS.with(|anv| {
|
||||
let v = anv.get();
|
||||
anv.set(v + node_tests);
|
||||
|
@ -204,12 +183,15 @@ impl<'a> BVH4<'a> {
|
|||
fn construct_from_base(
|
||||
arena: &'a MemArena,
|
||||
base: &BVHBase,
|
||||
node_index: usize,
|
||||
node_mem: &mut BVH4Node<'a>,
|
||||
) {
|
||||
match base.nodes[node_index] {
|
||||
BVHBaseNode::Internal {
|
||||
bounds_range,
|
||||
node: &BVHBaseNode,
|
||||
fill_node: &mut BVH4Node<'a>,
|
||||
) -> usize {
|
||||
let mut node_count = 0;
|
||||
|
||||
match node {
|
||||
// Create internal node
|
||||
&BVHBaseNode::Internal {
|
||||
bounds_range: _,
|
||||
children_indices,
|
||||
split_axis,
|
||||
} => {
|
||||
|
@ -218,7 +200,7 @@ impl<'a> BVH4<'a> {
|
|||
|
||||
// Prepare convenient access to the stuff we need.
|
||||
let child_count: usize;
|
||||
let child_indices: [usize; 4];
|
||||
let children; // [Optional, Optional, Optional, Optional]
|
||||
let split_info: SplitAxes;
|
||||
match *child_l {
|
||||
BVHBaseNode::Internal {
|
||||
|
@ -234,13 +216,23 @@ impl<'a> BVH4<'a> {
|
|||
} => {
|
||||
// Four nodes
|
||||
child_count = 4;
|
||||
child_indices = [i_l.0, i_l.1, i_r.0, i_r.1];
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
];
|
||||
split_info = SplitAxes::Full((split_axis, s_l, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Three nodes with left split
|
||||
child_count = 3;
|
||||
child_indices = [i_l.0, i_l.1, children_indices.1, 0];
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(child_r),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Left((split_axis, s_l));
|
||||
}
|
||||
}
|
||||
|
@ -254,76 +246,112 @@ impl<'a> BVH4<'a> {
|
|||
} => {
|
||||
// Three nodes with right split
|
||||
child_count = 3;
|
||||
child_indices = [children_indices.0, i_r.0, i_r.1, 0];
|
||||
children = [
|
||||
Some(child_l),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Right((split_axis, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Two nodes
|
||||
child_count = 2;
|
||||
child_indices = [children_indices.0, children_indices.1, 0, 0];
|
||||
children = [Some(child_l), Some(child_r), None, None];
|
||||
split_info = SplitAxes::TopOnly(split_axis);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy bounds
|
||||
let bounds = arena
|
||||
.copy_slice_with_alignment(&base.bounds[bounds_range.0..bounds_range.1], 32);
|
||||
node_count += child_count;
|
||||
|
||||
// Build children
|
||||
let children_mem = unsafe {
|
||||
// Construct bounds
|
||||
let bounds = {
|
||||
let bounds_len = children
|
||||
.iter()
|
||||
.map(|c| {
|
||||
if let &Some(n) = c {
|
||||
let len = n.bounds_range().1 - n.bounds_range().0;
|
||||
debug_assert!(len >= 1);
|
||||
len
|
||||
} else {
|
||||
0
|
||||
}
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
debug_assert!(bounds_len >= 1);
|
||||
let bounds =
|
||||
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
|
||||
if bounds_len < 2 {
|
||||
let b1 =
|
||||
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b2 =
|
||||
children[1].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b3 =
|
||||
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b4 =
|
||||
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
} else {
|
||||
for (i, b) in bounds.iter_mut().enumerate() {
|
||||
let time = i as f32 / (bounds_len - 1) as f32;
|
||||
|
||||
let b1 = children[0].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b2 = children[1].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b3 = children[2].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b4 = children[3].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
*b = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
}
|
||||
}
|
||||
bounds
|
||||
};
|
||||
|
||||
// Construct child nodes
|
||||
let child_nodes = unsafe {
|
||||
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32)
|
||||
};
|
||||
for i in 0..child_count {
|
||||
BVH4::construct_from_base(arena, base, child_indices[i], &mut children_mem[i]);
|
||||
for (i, c) in children[0..child_count].iter().enumerate() {
|
||||
node_count +=
|
||||
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
|
||||
}
|
||||
|
||||
// Fill in node
|
||||
*node_mem = BVH4Node::Inner {
|
||||
// Build this node
|
||||
*fill_node = BVH4Node::Internal {
|
||||
bounds: bounds,
|
||||
children: child_nodes,
|
||||
traversal_code: calc_traversal_code(split_info),
|
||||
bounds_start: &bounds[0],
|
||||
bounds_len: bounds.len() as u16,
|
||||
children: children_mem,
|
||||
};
|
||||
}
|
||||
|
||||
BVHBaseNode::Leaf {
|
||||
bounds_range,
|
||||
object_range,
|
||||
} => {
|
||||
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
|
||||
|
||||
*node_mem = BVH4Node::Leaf {
|
||||
bounds_start: &bounds[0],
|
||||
bounds_len: bounds.len() as u16,
|
||||
// Create internal node
|
||||
&BVHBaseNode::Leaf { object_range, .. } => {
|
||||
*fill_node = BVH4Node::Leaf {
|
||||
object_range: object_range,
|
||||
};
|
||||
node_count += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
lazy_static! {
|
||||
static ref DEGENERATE_BOUNDS: [BBox; 1] = [BBox::new()];
|
||||
return node_count;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for BVH4<'a> {
|
||||
fn bounds(&self) -> &[BBox] {
|
||||
match self.root {
|
||||
None => &DEGENERATE_BOUNDS[..],
|
||||
Some(root) => match *root {
|
||||
BVH4Node::Inner {
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
..
|
||||
}
|
||||
| BVH4Node::Leaf {
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
..
|
||||
} => unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) },
|
||||
},
|
||||
}
|
||||
fn bounds<'b>(&'b self) -> &'b [BBox] {
|
||||
self._bounds.unwrap_or(&[])
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
mod bvh;
|
||||
// mod bvh;
|
||||
mod bvh4;
|
||||
mod bvh_base;
|
||||
mod light_array;
|
||||
|
@ -13,15 +13,14 @@ use crate::{
|
|||
};
|
||||
|
||||
pub use self::{
|
||||
bvh::{BVHNode, BVH},
|
||||
bvh4::{BVH4Node, BVH4},
|
||||
// bvh::{BVHNode, BVH},
|
||||
bvh4::{ray_code, BVH4Node, BVH4},
|
||||
light_array::LightArray,
|
||||
light_tree::LightTree,
|
||||
};
|
||||
|
||||
// Track BVH traversal time
|
||||
thread_local! {
|
||||
pub static ACCEL_TRAV_TIME: Cell<f64> = Cell::new(0.0);
|
||||
pub static ACCEL_NODE_RAY_TESTS: Cell<u64> = Cell::new(0);
|
||||
}
|
||||
|
||||
|
|
11
src/bbox.rs
11
src/bbox.rs
|
@ -7,8 +7,7 @@ use std::{
|
|||
|
||||
use crate::{
|
||||
lerp::{lerp, lerp_slice, Lerp},
|
||||
math::{fast_minf32, Matrix4x4, Point},
|
||||
ray::AccelRay,
|
||||
math::{fast_minf32, Matrix4x4, Point, Vector},
|
||||
};
|
||||
|
||||
const BBOX_MAXT_ADJUST: f32 = 1.000_000_24;
|
||||
|
@ -40,17 +39,17 @@ impl BBox {
|
|||
}
|
||||
|
||||
// Returns whether the given ray intersects with the bbox.
|
||||
pub fn intersect_accel_ray(&self, ray: &AccelRay) -> bool {
|
||||
pub fn intersect_ray(&self, orig: Point, dir_inv: Vector, max_t: f32) -> bool {
|
||||
// Calculate slab intersections
|
||||
let t1 = (self.min.co - ray.orig.co) * ray.dir_inv.co;
|
||||
let t2 = (self.max.co - ray.orig.co) * ray.dir_inv.co;
|
||||
let t1 = (self.min.co - orig.co) * dir_inv.co;
|
||||
let t2 = (self.max.co - orig.co) * dir_inv.co;
|
||||
|
||||
// Find the far and near intersection
|
||||
let mut far_t = t1.v_max(t2);
|
||||
let mut near_t = t1.v_min(t2);
|
||||
far_t.set_3(std::f32::INFINITY);
|
||||
near_t.set_3(0.0);
|
||||
let far_hit_t = fast_minf32(far_t.h_min() * BBOX_MAXT_ADJUST, ray.max_t);
|
||||
let far_hit_t = fast_minf32(far_t.h_min() * BBOX_MAXT_ADJUST, max_t);
|
||||
let near_hit_t = near_t.h_max();
|
||||
|
||||
// Did we hit?
|
||||
|
|
139
src/bbox4.rs
Normal file
139
src/bbox4.rs
Normal file
|
@ -0,0 +1,139 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use std;
|
||||
use std::ops::{BitOr, BitOrAssign};
|
||||
|
||||
use crate::{
|
||||
bbox::BBox,
|
||||
lerp::{lerp, Lerp},
|
||||
math::{Point, Vector},
|
||||
};
|
||||
|
||||
use float4::{Bool4, Float4};
|
||||
|
||||
const BBOX_MAXT_ADJUST: f32 = 1.00000024;
|
||||
|
||||
/// A SIMD set of 4 3D axis-aligned bounding boxes.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct BBox4 {
|
||||
pub x: (Float4, Float4), // (min, max)
|
||||
pub y: (Float4, Float4), // (min, max)
|
||||
pub z: (Float4, Float4), // (min, max)
|
||||
}
|
||||
|
||||
impl BBox4 {
|
||||
/// Creates a degenerate BBox with +infinity min and -infinity max.
|
||||
pub fn new() -> BBox4 {
|
||||
BBox4 {
|
||||
x: (
|
||||
Float4::splat(std::f32::INFINITY),
|
||||
Float4::splat(std::f32::NEG_INFINITY),
|
||||
),
|
||||
y: (
|
||||
Float4::splat(std::f32::INFINITY),
|
||||
Float4::splat(std::f32::NEG_INFINITY),
|
||||
),
|
||||
z: (
|
||||
Float4::splat(std::f32::INFINITY),
|
||||
Float4::splat(std::f32::NEG_INFINITY),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a BBox with min as the minimum extent and max as the maximum
|
||||
/// extent.
|
||||
pub fn from_bboxes(b1: BBox, b2: BBox, b3: BBox, b4: BBox) -> BBox4 {
|
||||
BBox4 {
|
||||
x: (
|
||||
Float4::new(b1.min.x(), b2.min.x(), b3.min.x(), b4.min.x()),
|
||||
Float4::new(b1.max.x(), b2.max.x(), b3.max.x(), b4.max.x()),
|
||||
),
|
||||
y: (
|
||||
Float4::new(b1.min.y(), b2.min.y(), b3.min.y(), b4.min.y()),
|
||||
Float4::new(b1.max.y(), b2.max.y(), b3.max.y(), b4.max.y()),
|
||||
),
|
||||
z: (
|
||||
Float4::new(b1.min.z(), b2.min.z(), b3.min.z(), b4.min.z()),
|
||||
Float4::new(b1.max.z(), b2.max.z(), b3.max.z(), b4.max.z()),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
// Returns whether the given ray intersects with the bboxes.
|
||||
pub fn intersect_ray(&self, orig: Point, dir_inv: Vector, max_t: f32) -> Bool4 {
|
||||
// Get the ray data into SIMD format.
|
||||
let ro_x = orig.co.all_0();
|
||||
let ro_y = orig.co.all_1();
|
||||
let ro_z = orig.co.all_2();
|
||||
let rdi_x = dir_inv.co.all_0();
|
||||
let rdi_y = dir_inv.co.all_1();
|
||||
let rdi_z = dir_inv.co.all_2();
|
||||
let max_t = Float4::splat(max_t);
|
||||
|
||||
// Slab tests
|
||||
let t1_x = (self.x.0 - ro_x) * rdi_x;
|
||||
let t1_y = (self.y.0 - ro_y) * rdi_y;
|
||||
let t1_z = (self.z.0 - ro_z) * rdi_z;
|
||||
let t2_x = (self.x.1 - ro_x) * rdi_x;
|
||||
let t2_y = (self.y.1 - ro_y) * rdi_y;
|
||||
let t2_z = (self.z.1 - ro_z) * rdi_z;
|
||||
|
||||
// Get the far and near t hits for each axis.
|
||||
let t_far_x = t1_x.v_max(t2_x);
|
||||
let t_far_y = t1_y.v_max(t2_y);
|
||||
let t_far_z = t1_z.v_max(t2_z);
|
||||
let t_near_x = t1_x.v_min(t2_x);
|
||||
let t_near_y = t1_y.v_min(t2_y);
|
||||
let t_near_z = t1_z.v_min(t2_z);
|
||||
|
||||
// Calculate over-all far t hit.
|
||||
let far_t =
|
||||
(t_far_x.v_min(t_far_y.v_min(t_far_z)) * Float4::splat(BBOX_MAXT_ADJUST)).v_min(max_t);
|
||||
|
||||
// Calculate over-all near t hit.
|
||||
let near_t = t_near_x
|
||||
.v_max(t_near_y)
|
||||
.v_max(t_near_z.v_max(Float4::splat(0.0)));
|
||||
|
||||
// Hit results
|
||||
near_t.lt(far_t)
|
||||
}
|
||||
}
|
||||
|
||||
/// Union of two BBoxes.
|
||||
impl BitOr for BBox4 {
|
||||
type Output = BBox4;
|
||||
|
||||
fn bitor(self, rhs: BBox4) -> BBox4 {
|
||||
BBox4 {
|
||||
x: (self.x.0.v_min(rhs.x.0), self.x.1.v_max(rhs.x.1)),
|
||||
y: (self.y.0.v_min(rhs.y.0), self.y.1.v_max(rhs.y.1)),
|
||||
z: (self.z.0.v_min(rhs.z.0), self.z.1.v_max(rhs.z.1)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BitOrAssign for BBox4 {
|
||||
fn bitor_assign(&mut self, rhs: BBox4) {
|
||||
*self = *self | rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Lerp for BBox4 {
|
||||
fn lerp(self, other: BBox4, alpha: f32) -> BBox4 {
|
||||
BBox4 {
|
||||
x: (
|
||||
lerp(self.x.0, other.x.0, alpha),
|
||||
lerp(self.x.1, other.x.1, alpha),
|
||||
),
|
||||
y: (
|
||||
lerp(self.y.0, other.y.0, alpha),
|
||||
lerp(self.y.1, other.y.1, alpha),
|
||||
),
|
||||
z: (
|
||||
lerp(self.z.0, other.z.0, alpha),
|
||||
lerp(self.z.1, other.z.1, alpha),
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
|
@ -92,6 +92,12 @@ impl<'a> Camera<'a> {
|
|||
)
|
||||
.normalized();
|
||||
|
||||
Ray::new(orig * transform, dir * transform, time, wavelength, false)
|
||||
Ray {
|
||||
orig: orig * transform,
|
||||
dir: dir * transform,
|
||||
time: time,
|
||||
wavelength: wavelength,
|
||||
max_t: std::f32::INFINITY,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,7 +6,7 @@ use crate::{
|
|||
color::{Color, SpectralSample},
|
||||
lerp::lerp_slice,
|
||||
math::{cross, dot, Matrix4x4, Normal, Point, Vector},
|
||||
ray::{AccelRay, Ray},
|
||||
ray::{RayBatch, RayStack},
|
||||
sampling::{
|
||||
spherical_triangle_solid_angle, triangle_surface_area, uniform_sample_spherical_triangle,
|
||||
uniform_sample_triangle,
|
||||
|
@ -257,20 +257,23 @@ impl<'a> SurfaceLight for RectangleLight<'a> {
|
|||
impl<'a> Surface for RectangleLight<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
isects: &mut [SurfaceIntersection],
|
||||
shader: &SurfaceShader,
|
||||
space: &[Matrix4x4],
|
||||
) {
|
||||
let _ = shader; // Silence 'unused' warning
|
||||
|
||||
for r in accel_rays.iter_mut() {
|
||||
let wr = &wrays[r.id as usize];
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let time = rays.time(ray_idx);
|
||||
let orig = rays.orig(ray_idx);
|
||||
let dir = rays.dir(ray_idx);
|
||||
let max_t = rays.max_t(ray_idx);
|
||||
|
||||
// Calculate time interpolated values
|
||||
let dim = lerp_slice(self.dimensions, r.time);
|
||||
let xform = lerp_slice(space, r.time);
|
||||
let dim = lerp_slice(self.dimensions, time);
|
||||
let xform = lerp_slice(space, time);
|
||||
|
||||
let space_inv = xform.inverse();
|
||||
|
||||
|
@ -281,18 +284,19 @@ impl<'a> Surface for RectangleLight<'a> {
|
|||
let p4 = Point::new(dim.0 * 0.5, dim.1 * -0.5, 0.0) * space_inv;
|
||||
|
||||
// Test against two triangles that make up the light
|
||||
let ray_pre = triangle::RayTriPrecompute::new(dir);
|
||||
for tri in &[(p1, p2, p3), (p3, p4, p1)] {
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(wr, *tri) {
|
||||
if t < r.max_t {
|
||||
if r.is_occlusion() {
|
||||
isects[r.id as usize] = SurfaceIntersection::Occlude;
|
||||
r.mark_done();
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(orig, ray_pre, max_t, *tri) {
|
||||
if t < max_t {
|
||||
if rays.is_occlusion(ray_idx) {
|
||||
isects[ray_idx] = SurfaceIntersection::Occlude;
|
||||
rays.mark_done(ray_idx);
|
||||
} else {
|
||||
let (pos, pos_err) = triangle::surface_point(*tri, (b0, b1, b2));
|
||||
let normal = cross(tri.0 - tri.1, tri.0 - tri.2).into_normal();
|
||||
|
||||
let intersection_data = SurfaceIntersectionData {
|
||||
incoming: wr.dir,
|
||||
incoming: dir,
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
|
@ -301,35 +305,35 @@ impl<'a> Surface for RectangleLight<'a> {
|
|||
local_space: xform,
|
||||
sample_pdf: self.sample_pdf(
|
||||
&xform,
|
||||
wr.orig,
|
||||
wr.dir,
|
||||
orig,
|
||||
dir,
|
||||
pos,
|
||||
wr.wavelength,
|
||||
r.time,
|
||||
rays.wavelength(ray_idx),
|
||||
time,
|
||||
),
|
||||
};
|
||||
|
||||
let closure = {
|
||||
let inv_surface_area = (1.0 / (dim.0 as f64 * dim.1 as f64)) as f32;
|
||||
let color = lerp_slice(self.colors, r.time) * inv_surface_area;
|
||||
let color = lerp_slice(self.colors, time) * inv_surface_area;
|
||||
SurfaceClosure::Emit(color)
|
||||
};
|
||||
|
||||
// Fill in intersection
|
||||
isects[r.id as usize] = SurfaceIntersection::Hit {
|
||||
isects[ray_idx] = SurfaceIntersection::Hit {
|
||||
intersection_data: intersection_data,
|
||||
closure: closure,
|
||||
};
|
||||
|
||||
// Set ray's max t
|
||||
r.max_t = t;
|
||||
rays.set_max_t(ray_idx, t);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ use crate::{
|
|||
color::{Color, SpectralSample},
|
||||
lerp::lerp_slice,
|
||||
math::{coordinate_system_from_vector, dot, Matrix4x4, Normal, Point, Vector},
|
||||
ray::{AccelRay, Ray},
|
||||
ray::{RayBatch, RayStack},
|
||||
sampling::{uniform_sample_cone, uniform_sample_cone_pdf, uniform_sample_sphere},
|
||||
shading::surface_closure::SurfaceClosure,
|
||||
shading::SurfaceShader,
|
||||
|
@ -206,26 +206,26 @@ impl<'a> SurfaceLight for SphereLight<'a> {
|
|||
impl<'a> Surface for SphereLight<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
isects: &mut [SurfaceIntersection],
|
||||
shader: &SurfaceShader,
|
||||
space: &[Matrix4x4],
|
||||
) {
|
||||
let _ = shader; // Silence 'unused' warning
|
||||
|
||||
for r in accel_rays.iter_mut() {
|
||||
let wr = &wrays[r.id as usize];
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let time = rays.time(ray_idx);
|
||||
|
||||
// Get the transform space
|
||||
let xform = lerp_slice(space, r.time);
|
||||
let xform = lerp_slice(space, time);
|
||||
|
||||
// Get the radius of the sphere at the ray's time
|
||||
let radius = lerp_slice(self.radii, r.time); // Radius of the sphere
|
||||
let radius = lerp_slice(self.radii, time); // Radius of the sphere
|
||||
|
||||
// Get the ray origin and direction in local space
|
||||
let orig = r.orig.into_vector();
|
||||
let dir = wr.dir * xform;
|
||||
let orig = rays.orig(ray_idx).into_vector();
|
||||
let dir = rays.dir(ray_idx) * xform;
|
||||
|
||||
// Code adapted to Rust from https://github.com/Tecla/Rayito
|
||||
// Ray-sphere intersection can result in either zero, one or two points
|
||||
|
@ -242,7 +242,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
let discriminant = (b * b) - (4.0 * a * c);
|
||||
if discriminant < 0.0 {
|
||||
// Discriminant less than zero? No solution => no intersection.
|
||||
continue;
|
||||
return;
|
||||
}
|
||||
let discriminant = discriminant.sqrt();
|
||||
|
||||
|
@ -257,7 +257,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
|
||||
// Get our final parametric values
|
||||
let mut t0 = q / a;
|
||||
let mut t1 = if q != 0.0 { c / q } else { r.max_t };
|
||||
let mut t1 = if q != 0.0 { c / q } else { rays.max_t(ray_idx) };
|
||||
|
||||
// Swap them so they are ordered right
|
||||
if t0 > t1 {
|
||||
|
@ -266,25 +266,25 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
}
|
||||
|
||||
// Check our intersection for validity against this ray's extents
|
||||
if t0 > r.max_t || t1 <= 0.0 {
|
||||
// Didn't hit because shere is entirely outside of ray's extents
|
||||
continue;
|
||||
if t0 > rays.max_t(ray_idx) || t1 <= 0.0 {
|
||||
// Didn't hit because sphere is entirely outside of ray's extents
|
||||
return;
|
||||
}
|
||||
|
||||
let t = if t0 > 0.0 {
|
||||
t0
|
||||
} else if t1 <= r.max_t {
|
||||
} else if t1 <= rays.max_t(ray_idx) {
|
||||
t1
|
||||
} else {
|
||||
// Didn't hit because ray is entirely within the sphere, and
|
||||
// therefore doesn't hit its surface.
|
||||
continue;
|
||||
return;
|
||||
};
|
||||
|
||||
// We hit the sphere, so calculate intersection info.
|
||||
if r.is_occlusion() {
|
||||
isects[r.id as usize] = SurfaceIntersection::Occlude;
|
||||
r.mark_done();
|
||||
if rays.is_occlusion(ray_idx) {
|
||||
isects[ray_idx] = SurfaceIntersection::Occlude;
|
||||
rays.mark_done(ray_idx);
|
||||
} else {
|
||||
let inv_xform = xform.inverse();
|
||||
|
||||
|
@ -300,7 +300,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
let normal = unit_pos.into_normal() * inv_xform;
|
||||
|
||||
let intersection_data = SurfaceIntersectionData {
|
||||
incoming: wr.dir,
|
||||
incoming: rays.dir(ray_idx),
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
|
@ -309,32 +309,32 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
local_space: xform,
|
||||
sample_pdf: self.sample_pdf(
|
||||
&xform,
|
||||
wr.orig,
|
||||
wr.dir,
|
||||
rays.orig(ray_idx),
|
||||
rays.dir(ray_idx),
|
||||
0.0,
|
||||
0.0,
|
||||
wr.wavelength,
|
||||
r.time,
|
||||
rays.wavelength(ray_idx),
|
||||
time,
|
||||
),
|
||||
};
|
||||
|
||||
let closure = {
|
||||
let inv_surface_area =
|
||||
(1.0 / (4.0 * PI_64 * radius as f64 * radius as f64)) as f32;
|
||||
let color = lerp_slice(self.colors, r.time) * inv_surface_area;
|
||||
let color = lerp_slice(self.colors, time) * inv_surface_area;
|
||||
SurfaceClosure::Emit(color)
|
||||
};
|
||||
|
||||
// Fill in intersection
|
||||
isects[r.id as usize] = SurfaceIntersection::Hit {
|
||||
isects[ray_idx] = SurfaceIntersection::Hit {
|
||||
intersection_data: intersection_data,
|
||||
closure: closure,
|
||||
};
|
||||
|
||||
// Set ray's max t
|
||||
r.max_t = t;
|
||||
rays.set_max_t(ray_idx, t);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
|
14
src/main.rs
14
src/main.rs
|
@ -11,12 +11,12 @@
|
|||
#![allow(clippy::needless_range_loop)]
|
||||
#![allow(clippy::excessive_precision)]
|
||||
|
||||
#[macro_use]
|
||||
extern crate lazy_static;
|
||||
|
||||
mod accel;
|
||||
mod algorithm;
|
||||
mod bbox;
|
||||
mod bbox4;
|
||||
mod boundable;
|
||||
mod camera;
|
||||
mod color;
|
||||
|
@ -47,10 +47,9 @@ use nom::{error_position, take_until};
|
|||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
accel::{BVH4Node, BVHNode},
|
||||
accel::BVH4Node,
|
||||
bbox::BBox,
|
||||
parse::{parse_scene, DataTree},
|
||||
ray::{AccelRay, Ray},
|
||||
renderer::LightPath,
|
||||
surface::SurfaceIntersection,
|
||||
timer::Timer,
|
||||
|
@ -159,15 +158,13 @@ fn main() {
|
|||
|
||||
// Print some misc useful dev info.
|
||||
if args.is_present("dev") {
|
||||
println!("Ray size: {} bytes", mem::size_of::<Ray>());
|
||||
println!("AccelRay size: {} bytes", mem::size_of::<AccelRay>());
|
||||
println!(
|
||||
"SurfaceIntersection size: {} bytes",
|
||||
mem::size_of::<SurfaceIntersection>()
|
||||
);
|
||||
println!("LightPath size: {} bytes", mem::size_of::<LightPath>());
|
||||
println!("BBox size: {} bytes", mem::size_of::<BBox>());
|
||||
println!("BVHNode size: {} bytes", mem::size_of::<BVHNode>());
|
||||
// println!("BVHNode size: {} bytes", mem::size_of::<BVHNode>());
|
||||
println!("BVH4Node size: {} bytes", mem::size_of::<BVH4Node>());
|
||||
return;
|
||||
}
|
||||
|
@ -295,9 +292,10 @@ fn main() {
|
|||
"\t\tTrace: {:.3}s",
|
||||
ntime * rstats.trace_time
|
||||
);
|
||||
println!("\t\t\tRays traced: {}", rstats.ray_count);
|
||||
println!(
|
||||
"\t\t\tTraversal: {:.3}s",
|
||||
ntime * rstats.accel_traversal_time
|
||||
"\t\t\tRays/sec: {}",
|
||||
(rstats.ray_count as f64 / (ntime * rstats.trace_time) as f64) as u64
|
||||
);
|
||||
println!("\t\t\tRay/node tests: {}", rstats.accel_node_visits);
|
||||
println!(
|
||||
|
|
435
src/ray.rs
435
src/ray.rs
|
@ -1,102 +1,401 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use float4::Float4;
|
||||
use float4::{Bool4, Float4};
|
||||
|
||||
use crate::math::{Matrix4x4, Point, Vector};
|
||||
|
||||
const OCCLUSION_FLAG: u32 = 1;
|
||||
const DONE_FLAG: u32 = 1 << 1;
|
||||
type RayIndexType = u16;
|
||||
type FlagType = u8;
|
||||
const OCCLUSION_FLAG: FlagType = 1;
|
||||
const DONE_FLAG: FlagType = 1 << 1;
|
||||
|
||||
/// This is never used directly in ray tracing--it's only used as a convenience
|
||||
/// for filling the RayBatch structure.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Ray {
|
||||
pub orig: Point,
|
||||
pub dir: Vector,
|
||||
pub max_t: f32,
|
||||
pub time: f32,
|
||||
pub wavelength: f32,
|
||||
pub flags: u32,
|
||||
pub max_t: f32,
|
||||
}
|
||||
|
||||
impl Ray {
|
||||
pub fn new(orig: Point, dir: Vector, time: f32, wavelength: f32, is_occ: bool) -> Ray {
|
||||
if !is_occ {
|
||||
Ray {
|
||||
orig: orig,
|
||||
dir: dir,
|
||||
max_t: std::f32::INFINITY,
|
||||
time: time,
|
||||
wavelength: wavelength,
|
||||
flags: 0,
|
||||
}
|
||||
} else {
|
||||
Ray {
|
||||
orig: orig,
|
||||
dir: dir,
|
||||
max_t: 1.0,
|
||||
time: time,
|
||||
wavelength: wavelength,
|
||||
flags: OCCLUSION_FLAG,
|
||||
}
|
||||
/// The hot (frequently accessed) parts of ray data.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct RayHot {
|
||||
orig_local: Point, // Local-space ray origin
|
||||
dir_inv_local: Vector, // Local-space 1.0/ray direction
|
||||
max_t: f32,
|
||||
time: f32,
|
||||
flags: FlagType,
|
||||
}
|
||||
|
||||
/// The cold (infrequently accessed) parts of ray data.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct RayCold {
|
||||
orig: Point, // World-space ray origin
|
||||
dir: Vector, // World-space ray direction
|
||||
wavelength: f32,
|
||||
}
|
||||
|
||||
/// A batch of rays, separated into hot and cold parts.
|
||||
#[derive(Debug)]
|
||||
pub struct RayBatch {
|
||||
hot: Vec<RayHot>,
|
||||
cold: Vec<RayCold>,
|
||||
}
|
||||
|
||||
impl RayBatch {
|
||||
/// Creates a new empty ray batch.
|
||||
pub fn new() -> RayBatch {
|
||||
RayBatch {
|
||||
hot: Vec::new(),
|
||||
cold: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn transform(&mut self, mat: &Matrix4x4) {
|
||||
self.orig = self.orig * *mat;
|
||||
self.dir = self.dir * *mat;
|
||||
/// Creates a new empty ray batch, with pre-allocated capacity for
|
||||
/// `n` rays.
|
||||
pub fn with_capacity(n: usize) -> RayBatch {
|
||||
RayBatch {
|
||||
hot: Vec::with_capacity(n),
|
||||
cold: Vec::with_capacity(n),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_occlusion(&self) -> bool {
|
||||
(self.flags & OCCLUSION_FLAG) != 0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct AccelRay {
|
||||
pub orig: Point,
|
||||
pub dir_inv: Vector,
|
||||
pub max_t: f32,
|
||||
pub time: f32,
|
||||
pub flags: u32,
|
||||
pub id: u32,
|
||||
}
|
||||
|
||||
impl AccelRay {
|
||||
pub fn new(ray: &Ray, id: u32) -> AccelRay {
|
||||
AccelRay {
|
||||
orig: ray.orig,
|
||||
dir_inv: Vector {
|
||||
co: Float4::splat(1.0) / ray.dir.co,
|
||||
},
|
||||
pub fn push(&mut self, ray: Ray, is_occlusion: bool) {
|
||||
self.hot.push(RayHot {
|
||||
orig_local: ray.orig, // Bogus, to place-hold.
|
||||
dir_inv_local: ray.dir, // Bogus, to place-hold.
|
||||
max_t: ray.max_t,
|
||||
time: ray.time,
|
||||
flags: ray.flags,
|
||||
id: id,
|
||||
flags: if is_occlusion { OCCLUSION_FLAG } else { 0 },
|
||||
});
|
||||
self.cold.push(RayCold {
|
||||
orig: ray.orig,
|
||||
dir: ray.dir,
|
||||
wavelength: ray.wavelength,
|
||||
});
|
||||
}
|
||||
|
||||
pub fn swap(&mut self, a: usize, b: usize) {
|
||||
self.hot.swap(a, b);
|
||||
self.cold.swap(a, b);
|
||||
}
|
||||
|
||||
pub fn set_from_ray(&mut self, ray: &Ray, is_occlusion: bool, idx: usize) {
|
||||
self.hot[idx].orig_local = ray.orig;
|
||||
self.hot[idx].dir_inv_local = Vector {
|
||||
co: Float4::splat(1.0) / ray.dir.co,
|
||||
};
|
||||
self.hot[idx].max_t = ray.max_t;
|
||||
self.hot[idx].time = ray.time;
|
||||
self.hot[idx].flags = if is_occlusion { OCCLUSION_FLAG } else { 0 };
|
||||
|
||||
self.cold[idx].orig = ray.orig;
|
||||
self.cold[idx].dir = ray.dir;
|
||||
self.cold[idx].wavelength = ray.wavelength;
|
||||
}
|
||||
|
||||
pub fn truncate(&mut self, len: usize) {
|
||||
self.hot.truncate(len);
|
||||
self.cold.truncate(len);
|
||||
}
|
||||
|
||||
/// Clear all rays, settings the size of the batch back to zero.
|
||||
///
|
||||
/// Capacity is maintained.
|
||||
pub fn clear(&mut self) {
|
||||
self.hot.clear();
|
||||
self.cold.clear();
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.hot.len()
|
||||
}
|
||||
|
||||
/// Updates the accel data of the given ray (at index `idx`) with the
|
||||
/// given world-to-local-space transform matrix.
|
||||
///
|
||||
/// This should be called when entering (and exiting) traversal of a
|
||||
/// new transform space.
|
||||
pub fn update_local(&mut self, idx: usize, xform: &Matrix4x4) {
|
||||
self.hot[idx].orig_local = self.cold[idx].orig * *xform;
|
||||
self.hot[idx].dir_inv_local = Vector {
|
||||
co: Float4::splat(1.0) / (self.cold[idx].dir * *xform).co,
|
||||
};
|
||||
}
|
||||
|
||||
//==========================================================
|
||||
// Data access
|
||||
|
||||
#[inline(always)]
|
||||
pub fn orig(&self, idx: usize) -> Point {
|
||||
self.cold[idx].orig
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn dir(&self, idx: usize) -> Vector {
|
||||
self.cold[idx].dir
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn orig_local(&self, idx: usize) -> Point {
|
||||
self.hot[idx].orig_local
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn dir_inv_local(&self, idx: usize) -> Vector {
|
||||
self.hot[idx].dir_inv_local
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn time(&self, idx: usize) -> f32 {
|
||||
self.hot[idx].time
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn max_t(&self, idx: usize) -> f32 {
|
||||
self.hot[idx].max_t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_max_t(&mut self, idx: usize, new_max_t: f32) {
|
||||
self.hot[idx].max_t = new_max_t;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn wavelength(&self, idx: usize) -> f32 {
|
||||
self.cold[idx].wavelength
|
||||
}
|
||||
|
||||
/// Returns whether the given ray (at index `idx`) is an occlusion ray.
|
||||
#[inline(always)]
|
||||
pub fn is_occlusion(&self, idx: usize) -> bool {
|
||||
(self.hot[idx].flags & OCCLUSION_FLAG) != 0
|
||||
}
|
||||
|
||||
/// Returns whether the given ray (at index `idx`) has finished traversal.
|
||||
#[inline(always)]
|
||||
pub fn is_done(&self, idx: usize) -> bool {
|
||||
(self.hot[idx].flags & DONE_FLAG) != 0
|
||||
}
|
||||
|
||||
/// Marks the given ray (at index `idx`) as an occlusion ray.
|
||||
#[inline(always)]
|
||||
pub fn mark_occlusion(&mut self, idx: usize) {
|
||||
self.hot[idx].flags |= OCCLUSION_FLAG
|
||||
}
|
||||
|
||||
/// Marks the given ray (at index `idx`) as having finished traversal.
|
||||
#[inline(always)]
|
||||
pub fn mark_done(&mut self, idx: usize) {
|
||||
self.hot[idx].flags |= DONE_FLAG
|
||||
}
|
||||
}
|
||||
|
||||
/// A structure used for tracking traversal of a ray batch through a scene.
|
||||
#[derive(Debug)]
|
||||
pub struct RayStack {
|
||||
lanes: Vec<Lane>,
|
||||
tasks: Vec<RayTask>,
|
||||
}
|
||||
|
||||
impl RayStack {
|
||||
pub fn new() -> RayStack {
|
||||
RayStack {
|
||||
lanes: Vec::new(),
|
||||
tasks: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update_from_world_ray(&mut self, wr: &Ray) {
|
||||
self.orig = wr.orig;
|
||||
self.dir_inv = Vector {
|
||||
co: Float4::splat(1.0) / wr.dir.co,
|
||||
};
|
||||
/// Returns whether the stack is empty of tasks or not.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.tasks.is_empty()
|
||||
}
|
||||
|
||||
pub fn update_from_xformed_world_ray(&mut self, wr: &Ray, mat: &Matrix4x4) {
|
||||
self.orig = wr.orig * *mat;
|
||||
self.dir_inv = Vector {
|
||||
co: Float4::splat(1.0) / (wr.dir * *mat).co,
|
||||
};
|
||||
/// Makes sure there are at least `count` lanes.
|
||||
pub fn ensure_lane_count(&mut self, count: usize) {
|
||||
while self.lanes.len() < count {
|
||||
self.lanes.push(Lane {
|
||||
idxs: Vec::new(),
|
||||
end_len: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_occlusion(&self) -> bool {
|
||||
(self.flags & OCCLUSION_FLAG) != 0
|
||||
pub fn ray_count_in_next_task(&self) -> usize {
|
||||
let task = self.tasks.last().unwrap();
|
||||
let end = self.lanes[task.lane].end_len;
|
||||
end - task.start_idx
|
||||
}
|
||||
|
||||
pub fn is_done(&self) -> bool {
|
||||
(self.flags & DONE_FLAG) != 0
|
||||
pub fn next_task_ray_idx(&self, i: usize) -> usize {
|
||||
let task = self.tasks.last().unwrap();
|
||||
let i = i + task.start_idx;
|
||||
debug_assert!(i < self.lanes[task.lane].end_len);
|
||||
self.lanes[task.lane].idxs[i] as usize
|
||||
}
|
||||
|
||||
pub fn mark_done(&mut self) {
|
||||
self.flags |= DONE_FLAG;
|
||||
/// Clears the lanes and tasks of the RayStack.
|
||||
///
|
||||
/// Note: this is (importantly) different than calling clear individually
|
||||
/// on the `lanes` and `tasks` members. Specifically, we don't want to
|
||||
/// clear `lanes` itself, as that would also free all the memory of the
|
||||
/// individual lanes. Instead, we want to iterate over the individual
|
||||
/// lanes and clear them, but leave `lanes` itself untouched.
|
||||
pub fn clear(&mut self) {
|
||||
for lane in self.lanes.iter_mut() {
|
||||
lane.idxs.clear();
|
||||
lane.end_len = 0;
|
||||
}
|
||||
|
||||
self.tasks.clear();
|
||||
}
|
||||
|
||||
/// Pushes the given ray index onto the end of the specified lane.
|
||||
pub fn push_ray_index(&mut self, ray_idx: usize, lane: usize) {
|
||||
assert!(self.lanes.len() > lane);
|
||||
self.lanes[lane].idxs.push(ray_idx as RayIndexType);
|
||||
}
|
||||
|
||||
/// Pushes any excess indices on the given lane to a new task on the
|
||||
/// task stack.
|
||||
///
|
||||
/// Returns whether a task was pushed or not. No task will be pushed
|
||||
/// if there are no excess indices on the end of the lane.
|
||||
pub fn push_lane_to_task(&mut self, lane_idx: usize) -> bool {
|
||||
if self.lanes[lane_idx].end_len < self.lanes[lane_idx].idxs.len() {
|
||||
self.tasks.push(RayTask {
|
||||
lane: lane_idx,
|
||||
start_idx: self.lanes[lane_idx].end_len,
|
||||
});
|
||||
self.lanes[lane_idx].end_len = self.lanes[lane_idx].idxs.len();
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes the given list of lane indices, and pushes any excess indices on
|
||||
/// the end of each into a new task, in the order provided.
|
||||
pub fn push_lanes_to_tasks(&mut self, lane_idxs: &[usize]) {
|
||||
for &l in lane_idxs {
|
||||
self.push_lane_to_task(l);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn duplicate_next_task(&mut self) {
|
||||
let task = self.tasks.last().unwrap();
|
||||
let l = task.lane;
|
||||
let start = task.start_idx;
|
||||
let end = self.lanes[l].end_len;
|
||||
|
||||
// Extend the indices vector
|
||||
self.lanes[l].idxs.reserve(end - start);
|
||||
let old_len = self.lanes[l].idxs.len();
|
||||
let new_len = old_len + end - start;
|
||||
unsafe {
|
||||
self.lanes[l].idxs.set_len(new_len);
|
||||
}
|
||||
|
||||
// Copy elements
|
||||
copy_in_place::copy_in_place(&mut self.lanes[l].idxs, start..end, end);
|
||||
|
||||
// Push the new task onto the stack
|
||||
self.tasks.push(RayTask {
|
||||
lane: l,
|
||||
start_idx: end,
|
||||
});
|
||||
|
||||
self.lanes[l].end_len = self.lanes[l].idxs.len();
|
||||
}
|
||||
|
||||
// Pops the next task off the stack.
|
||||
pub fn pop_task(&mut self) {
|
||||
let task = self.tasks.pop().unwrap();
|
||||
self.lanes[task.lane].end_len = task.start_idx;
|
||||
self.lanes[task.lane].idxs.truncate(task.start_idx);
|
||||
}
|
||||
|
||||
// Executes a task without popping it from the task stack.
|
||||
pub fn do_next_task<F>(&mut self, mut handle_ray: F)
|
||||
where
|
||||
F: FnMut(usize),
|
||||
{
|
||||
let task = self.tasks.last().unwrap();
|
||||
let task_range = (task.start_idx, self.lanes[task.lane].end_len);
|
||||
|
||||
// Execute task.
|
||||
for i in task_range.0..task_range.1 {
|
||||
let ray_idx = self.lanes[task.lane].idxs[i];
|
||||
handle_ray(ray_idx as usize);
|
||||
}
|
||||
}
|
||||
|
||||
/// Pops the next task off the stack, and executes the provided closure for
|
||||
/// each ray index in the task.
|
||||
#[inline(always)]
|
||||
pub fn pop_do_next_task<F>(&mut self, handle_ray: F)
|
||||
where
|
||||
F: FnMut(usize),
|
||||
{
|
||||
self.do_next_task(handle_ray);
|
||||
self.pop_task();
|
||||
}
|
||||
|
||||
/// Pops the next task off the stack, executes the provided closure for
|
||||
/// each ray index in the task, and pushes the ray indices back onto the
|
||||
/// indicated lanes.
|
||||
pub fn pop_do_next_task_and_push_rays<F>(&mut self, output_lane_count: usize, mut handle_ray: F)
|
||||
where
|
||||
F: FnMut(usize) -> Bool4,
|
||||
{
|
||||
// Pop the task and do necessary bookkeeping.
|
||||
let task = self.tasks.pop().unwrap();
|
||||
let task_range = (task.start_idx, self.lanes[task.lane].end_len);
|
||||
self.lanes[task.lane].end_len = task.start_idx;
|
||||
|
||||
// SAFETY: this is probably evil, and depends on behavior of Vec that
|
||||
// are not actually promised. But we're essentially truncating the lane
|
||||
// to the start of our task range, but will continue to access it's
|
||||
// elements beyond that range via `get_unchecked()` below. Because the
|
||||
// memory is not freed nor altered, this is safe. However, again, the
|
||||
// Vec apis don't promise this behavior. So:
|
||||
//
|
||||
// TODO: build a slightly different lane abstraction to get this same
|
||||
// efficiency without depending on implicit Vec behavior.
|
||||
unsafe {
|
||||
self.lanes[task.lane].idxs.set_len(task.start_idx);
|
||||
}
|
||||
|
||||
// Execute task.
|
||||
for i in task_range.0..task_range.1 {
|
||||
let ray_idx = *unsafe { self.lanes[task.lane].idxs.get_unchecked(i) };
|
||||
let push_mask = handle_ray(ray_idx as usize);
|
||||
for l in 0..output_lane_count {
|
||||
if push_mask.get_n(l) {
|
||||
self.lanes[l as usize].idxs.push(ray_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A lane within a RayStack.
|
||||
#[derive(Debug)]
|
||||
struct Lane {
|
||||
idxs: Vec<RayIndexType>,
|
||||
end_len: usize,
|
||||
}
|
||||
|
||||
/// A task within a RayStack.
|
||||
//
|
||||
// Specifies the lane that the relevant ray pointers are in, and the
|
||||
// starting index within that lane. The relevant pointers are always
|
||||
// `&[start_idx..]` within the given lane.
|
||||
#[derive(Debug)]
|
||||
struct RayTask {
|
||||
lane: usize,
|
||||
start_idx: usize,
|
||||
}
|
||||
|
|
|
@ -12,8 +12,7 @@ use scoped_threadpool::Pool;
|
|||
use float4::Float4;
|
||||
|
||||
use crate::{
|
||||
accel::{ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME},
|
||||
algorithm::partition_pair,
|
||||
accel::ACCEL_NODE_RAY_TESTS,
|
||||
color::{map_0_1_to_wavelength, SpectralSample, XYZ},
|
||||
fp_utils::robust_ray_origin,
|
||||
hash::hash_u32,
|
||||
|
@ -21,7 +20,7 @@ use crate::{
|
|||
image::Image,
|
||||
math::{fast_logit, upper_power_of_two},
|
||||
mis::power_heuristic,
|
||||
ray::Ray,
|
||||
ray::{Ray, RayBatch},
|
||||
scene::{Scene, SceneLightSample},
|
||||
surface,
|
||||
timer::Timer,
|
||||
|
@ -41,8 +40,8 @@ pub struct Renderer<'a> {
|
|||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct RenderStats {
|
||||
pub trace_time: f64,
|
||||
pub accel_traversal_time: f64,
|
||||
pub accel_node_visits: u64,
|
||||
pub ray_count: u64,
|
||||
pub initial_ray_generation_time: f64,
|
||||
pub ray_generation_time: f64,
|
||||
pub sample_writing_time: f64,
|
||||
|
@ -53,8 +52,8 @@ impl RenderStats {
|
|||
fn new() -> RenderStats {
|
||||
RenderStats {
|
||||
trace_time: 0.0,
|
||||
accel_traversal_time: 0.0,
|
||||
accel_node_visits: 0,
|
||||
ray_count: 0,
|
||||
initial_ray_generation_time: 0.0,
|
||||
ray_generation_time: 0.0,
|
||||
sample_writing_time: 0.0,
|
||||
|
@ -64,8 +63,8 @@ impl RenderStats {
|
|||
|
||||
fn collect(&mut self, other: RenderStats) {
|
||||
self.trace_time += other.trace_time;
|
||||
self.accel_traversal_time += other.accel_traversal_time;
|
||||
self.accel_node_visits += other.accel_node_visits;
|
||||
self.ray_count += other.ray_count;
|
||||
self.initial_ray_generation_time += other.initial_ray_generation_time;
|
||||
self.ray_generation_time += other.ray_generation_time;
|
||||
self.sample_writing_time += other.sample_writing_time;
|
||||
|
@ -207,7 +206,7 @@ impl<'a> Renderer<'a> {
|
|||
let mut total_timer = Timer::new();
|
||||
|
||||
let mut paths = Vec::new();
|
||||
let mut rays = Vec::new();
|
||||
let mut rays = RayBatch::new();
|
||||
let mut tracer = Tracer::from_assembly(&self.scene.root);
|
||||
let mut xform_stack = TransformStack::new();
|
||||
|
||||
|
@ -266,7 +265,7 @@ impl<'a> Renderer<'a> {
|
|||
offset + si as u32,
|
||||
);
|
||||
paths.push(path);
|
||||
rays.push(ray);
|
||||
rays.push(ray, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -276,13 +275,20 @@ impl<'a> Renderer<'a> {
|
|||
let mut pi = paths.len();
|
||||
while pi > 0 {
|
||||
// Test rays against scene
|
||||
let isects = tracer.trace(&rays);
|
||||
let isects = tracer.trace(&mut rays);
|
||||
stats.trace_time += timer.tick() as f64;
|
||||
|
||||
// Determine next rays to shoot based on result
|
||||
pi = partition_pair(&mut paths[..pi], &mut rays[..pi], |i, path, ray| {
|
||||
path.next(&mut xform_stack, &self.scene, &isects[i], &mut *ray)
|
||||
});
|
||||
let mut new_end = 0;
|
||||
for i in 0..pi {
|
||||
if paths[i].next(&mut xform_stack, &self.scene, &isects[i], &mut rays, i) {
|
||||
paths.swap(new_end, i);
|
||||
rays.swap(new_end, i);
|
||||
new_end += 1;
|
||||
}
|
||||
}
|
||||
rays.truncate(new_end);
|
||||
pi = new_end;
|
||||
stats.ray_generation_time += timer.tick() as f64;
|
||||
}
|
||||
|
||||
|
@ -338,10 +344,7 @@ impl<'a> Renderer<'a> {
|
|||
}
|
||||
|
||||
stats.total_time += total_timer.tick() as f64;
|
||||
ACCEL_TRAV_TIME.with(|att| {
|
||||
stats.accel_traversal_time = att.get();
|
||||
att.set(0.0);
|
||||
});
|
||||
stats.ray_count = tracer.rays_traced();
|
||||
ACCEL_NODE_RAY_TESTS.with(|anv| {
|
||||
stats.accel_node_visits = anv.get();
|
||||
anv.set(0);
|
||||
|
@ -431,7 +434,8 @@ impl LightPath {
|
|||
xform_stack: &mut TransformStack,
|
||||
scene: &Scene,
|
||||
isect: &surface::SurfaceIntersection,
|
||||
ray: &mut Ray,
|
||||
rays: &mut RayBatch,
|
||||
ray_idx: usize,
|
||||
) -> bool {
|
||||
match self.event {
|
||||
//--------------------------------------------------------------------
|
||||
|
@ -496,13 +500,13 @@ impl LightPath {
|
|||
// Distant light
|
||||
SceneLightSample::Distant { direction, .. } => {
|
||||
let (attenuation, closure_pdf) = closure.evaluate(
|
||||
ray.dir,
|
||||
rays.dir(ray_idx),
|
||||
direction,
|
||||
idata.nor,
|
||||
idata.nor_g,
|
||||
self.wavelength,
|
||||
);
|
||||
let mut shadow_ray = {
|
||||
let shadow_ray = {
|
||||
// Calculate the shadow ray for testing if the light is
|
||||
// in shadow or not.
|
||||
let offset_pos = robust_ray_origin(
|
||||
|
@ -511,15 +515,14 @@ impl LightPath {
|
|||
idata.nor_g.normalized(),
|
||||
direction,
|
||||
);
|
||||
Ray::new(
|
||||
offset_pos,
|
||||
direction,
|
||||
self.time,
|
||||
self.wavelength,
|
||||
true,
|
||||
)
|
||||
Ray {
|
||||
orig: offset_pos,
|
||||
dir: direction,
|
||||
time: self.time,
|
||||
wavelength: self.wavelength,
|
||||
max_t: std::f32::INFINITY,
|
||||
}
|
||||
};
|
||||
shadow_ray.max_t = std::f32::INFINITY;
|
||||
(attenuation, closure_pdf, shadow_ray)
|
||||
}
|
||||
|
||||
|
@ -527,7 +530,7 @@ impl LightPath {
|
|||
SceneLightSample::Surface { sample_geo, .. } => {
|
||||
let dir = sample_geo.0 - idata.pos;
|
||||
let (attenuation, closure_pdf) = closure.evaluate(
|
||||
ray.dir,
|
||||
rays.dir(ray_idx),
|
||||
dir,
|
||||
idata.nor,
|
||||
idata.nor_g,
|
||||
|
@ -548,13 +551,13 @@ impl LightPath {
|
|||
sample_geo.1.normalized(),
|
||||
-dir,
|
||||
);
|
||||
Ray::new(
|
||||
offset_pos,
|
||||
offset_end - offset_pos,
|
||||
self.time,
|
||||
self.wavelength,
|
||||
true,
|
||||
)
|
||||
Ray {
|
||||
orig: offset_pos,
|
||||
dir: offset_end - offset_pos,
|
||||
time: self.time,
|
||||
wavelength: self.wavelength,
|
||||
max_t: 1.0,
|
||||
}
|
||||
};
|
||||
(attenuation, closure_pdf, shadow_ray)
|
||||
}
|
||||
|
@ -572,7 +575,7 @@ impl LightPath {
|
|||
light_info.color().e * attenuation.e * self.light_attenuation
|
||||
/ (light_mis_pdf * light_sel_pdf);
|
||||
|
||||
*ray = shadow_ray;
|
||||
rays.set_from_ray(&shadow_ray, true, ray_idx);
|
||||
|
||||
true
|
||||
}
|
||||
|
@ -609,8 +612,13 @@ impl LightPath {
|
|||
idata.nor_g.normalized(),
|
||||
dir,
|
||||
);
|
||||
self.next_bounce_ray =
|
||||
Some(Ray::new(offset_pos, dir, self.time, self.wavelength, false));
|
||||
self.next_bounce_ray = Some(Ray {
|
||||
orig: offset_pos,
|
||||
dir: dir,
|
||||
time: self.time,
|
||||
wavelength: self.wavelength,
|
||||
max_t: std::f32::INFINITY,
|
||||
});
|
||||
|
||||
true
|
||||
} else {
|
||||
|
@ -626,7 +634,7 @@ impl LightPath {
|
|||
self.event = LightPathEvent::ShadowRay;
|
||||
return true;
|
||||
} else if do_bounce {
|
||||
*ray = self.next_bounce_ray.unwrap();
|
||||
rays.set_from_ray(&self.next_bounce_ray.unwrap(), false, ray_idx);
|
||||
self.event = LightPathEvent::BounceRay;
|
||||
self.light_attenuation *= self.next_attenuation_fac;
|
||||
return true;
|
||||
|
@ -657,7 +665,7 @@ impl LightPath {
|
|||
|
||||
// Set up for the next bounce, if any
|
||||
if let Some(ref nbr) = self.next_bounce_ray {
|
||||
*ray = *nbr;
|
||||
rays.set_from_ray(nbr, false, ray_idx);
|
||||
self.light_attenuation *= self.next_attenuation_fac;
|
||||
self.event = LightPathEvent::BounceRay;
|
||||
return true;
|
||||
|
|
|
@ -8,7 +8,7 @@ use crate::{
|
|||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::{cross, dot, Matrix4x4, Normal, Point},
|
||||
ray::{AccelRay, Ray},
|
||||
ray::{RayBatch, RayStack, RayTask}
|
||||
shading::surface_closure::SurfaceClosure,
|
||||
};
|
||||
|
||||
|
@ -99,8 +99,8 @@ impl<'a> MicropolyBatch<'a> {
|
|||
impl<'a> MicropolyBatch<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
isects: &mut [SurfaceIntersection],
|
||||
space: &[Matrix4x4],
|
||||
) {
|
||||
|
@ -112,7 +112,7 @@ impl<'a> MicropolyBatch<'a> {
|
|||
};
|
||||
|
||||
self.accel
|
||||
.traverse(&mut accel_rays[..], self.indices, |tri_indices, rs| {
|
||||
.traverse(rays, ray_stack, self.indices, |tri_indices, rs| {
|
||||
// For static triangles with static transforms, cache them.
|
||||
let is_cached = self.time_sample_count == 1 && space.len() <= 1;
|
||||
let mut tri = if is_cached {
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
pub mod micropoly_batch;
|
||||
// pub mod micropoly_batch;
|
||||
pub mod triangle;
|
||||
pub mod triangle_mesh;
|
||||
|
||||
|
@ -9,7 +9,7 @@ use std::fmt::Debug;
|
|||
use crate::{
|
||||
boundable::Boundable,
|
||||
math::{Matrix4x4, Normal, Point, Vector},
|
||||
ray::{AccelRay, Ray},
|
||||
ray::{RayBatch, RayStack},
|
||||
shading::surface_closure::SurfaceClosure,
|
||||
shading::SurfaceShader,
|
||||
};
|
||||
|
@ -17,8 +17,8 @@ use crate::{
|
|||
pub trait Surface: Boundable + Debug + Sync {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
isects: &mut [SurfaceIntersection],
|
||||
shader: &SurfaceShader,
|
||||
space: &[Matrix4x4],
|
||||
|
|
|
@ -1,6 +1,48 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use crate::{fp_utils::fp_gamma, math::Point, ray::Ray};
|
||||
use crate::{
|
||||
fp_utils::fp_gamma,
|
||||
math::{Point, Vector},
|
||||
};
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct RayTriPrecompute {
|
||||
i: (usize, usize, usize),
|
||||
s: (f32, f32, f32),
|
||||
}
|
||||
|
||||
impl RayTriPrecompute {
|
||||
pub fn new(ray_dir: Vector) -> RayTriPrecompute {
|
||||
// Calculate the permuted dimension indices for the new ray space.
|
||||
let (xi, yi, zi) = {
|
||||
let xabs = ray_dir.x().abs();
|
||||
let yabs = ray_dir.y().abs();
|
||||
let zabs = ray_dir.z().abs();
|
||||
|
||||
if xabs > yabs && xabs > zabs {
|
||||
(1, 2, 0)
|
||||
} else if yabs > zabs {
|
||||
(2, 0, 1)
|
||||
} else {
|
||||
(0, 1, 2)
|
||||
}
|
||||
};
|
||||
|
||||
let dir_x = ray_dir.get_n(xi);
|
||||
let dir_y = ray_dir.get_n(yi);
|
||||
let dir_z = ray_dir.get_n(zi);
|
||||
|
||||
// Calculate shear constants.
|
||||
let sx = dir_x / dir_z;
|
||||
let sy = dir_y / dir_z;
|
||||
let sz = 1.0 / dir_z;
|
||||
|
||||
RayTriPrecompute {
|
||||
i: (xi, yi, zi),
|
||||
s: (sx, sy, sz),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Intersects `ray` with `tri`, returning `Some((t, b0, b1, b2))`, or `None`
|
||||
/// if no intersection.
|
||||
|
@ -13,42 +55,23 @@ use crate::{fp_utils::fp_gamma, math::Point, ray::Ray};
|
|||
///
|
||||
/// Uses the ray-triangle test from the paper "Watertight Ray/Triangle
|
||||
/// Intersection" by Woop et al.
|
||||
pub fn intersect_ray(ray: &Ray, tri: (Point, Point, Point)) -> Option<(f32, f32, f32, f32)> {
|
||||
// Calculate the permuted dimension indices for the new ray space.
|
||||
let (xi, yi, zi) = {
|
||||
let xabs = ray.dir.x().abs();
|
||||
let yabs = ray.dir.y().abs();
|
||||
let zabs = ray.dir.z().abs();
|
||||
|
||||
if xabs > yabs && xabs > zabs {
|
||||
(1, 2, 0)
|
||||
} else if yabs > zabs {
|
||||
(2, 0, 1)
|
||||
} else {
|
||||
(0, 1, 2)
|
||||
}
|
||||
};
|
||||
|
||||
let dir_x = ray.dir.get_n(xi);
|
||||
let dir_y = ray.dir.get_n(yi);
|
||||
let dir_z = ray.dir.get_n(zi);
|
||||
|
||||
// Calculate shear constants.
|
||||
let sx = dir_x / dir_z;
|
||||
let sy = dir_y / dir_z;
|
||||
let sz = 1.0 / dir_z;
|
||||
|
||||
pub fn intersect_ray(
|
||||
ray_orig: Point,
|
||||
ray_pre: RayTriPrecompute,
|
||||
ray_max_t: f32,
|
||||
tri: (Point, Point, Point),
|
||||
) -> Option<(f32, f32, f32, f32)> {
|
||||
// Calculate vertices in ray space.
|
||||
let p0 = tri.0 - ray.orig;
|
||||
let p1 = tri.1 - ray.orig;
|
||||
let p2 = tri.2 - ray.orig;
|
||||
let p0 = tri.0 - ray_orig;
|
||||
let p1 = tri.1 - ray_orig;
|
||||
let p2 = tri.2 - ray_orig;
|
||||
|
||||
let p0x = p0.get_n(xi) - (sx * p0.get_n(zi));
|
||||
let p0y = p0.get_n(yi) - (sy * p0.get_n(zi));
|
||||
let p1x = p1.get_n(xi) - (sx * p1.get_n(zi));
|
||||
let p1y = p1.get_n(yi) - (sy * p1.get_n(zi));
|
||||
let p2x = p2.get_n(xi) - (sx * p2.get_n(zi));
|
||||
let p2y = p2.get_n(yi) - (sy * p2.get_n(zi));
|
||||
let p0x = p0.get_n(ray_pre.i.0) - (ray_pre.s.0 * p0.get_n(ray_pre.i.2));
|
||||
let p0y = p0.get_n(ray_pre.i.1) - (ray_pre.s.1 * p0.get_n(ray_pre.i.2));
|
||||
let p1x = p1.get_n(ray_pre.i.0) - (ray_pre.s.0 * p1.get_n(ray_pre.i.2));
|
||||
let p1y = p1.get_n(ray_pre.i.1) - (ray_pre.s.1 * p1.get_n(ray_pre.i.2));
|
||||
let p2x = p2.get_n(ray_pre.i.0) - (ray_pre.s.0 * p2.get_n(ray_pre.i.2));
|
||||
let p2y = p2.get_n(ray_pre.i.1) - (ray_pre.s.1 * p2.get_n(ray_pre.i.2));
|
||||
|
||||
// Calculate scaled barycentric coordinates.
|
||||
let mut e0 = (p1x * p2y) - (p1y * p2x);
|
||||
|
@ -74,14 +97,14 @@ pub fn intersect_ray(ray: &Ray, tri: (Point, Point, Point)) -> Option<(f32, f32,
|
|||
}
|
||||
|
||||
// Calculate t of hitpoint.
|
||||
let p0z = sz * p0.get_n(zi);
|
||||
let p1z = sz * p1.get_n(zi);
|
||||
let p2z = sz * p2.get_n(zi);
|
||||
let p0z = ray_pre.s.2 * p0.get_n(ray_pre.i.2);
|
||||
let p1z = ray_pre.s.2 * p1.get_n(ray_pre.i.2);
|
||||
let p2z = ray_pre.s.2 * p2.get_n(ray_pre.i.2);
|
||||
let t_scaled = (e0 * p0z) + (e1 * p1z) + (e2 * p2z);
|
||||
|
||||
// Check if the hitpoint t is within ray min/max t.
|
||||
if (det > 0.0 && (t_scaled <= 0.0 || t_scaled > (ray.max_t * det)))
|
||||
|| (det < 0.0 && (t_scaled >= 0.0 || t_scaled < (ray.max_t * det)))
|
||||
if (det > 0.0 && (t_scaled <= 0.0 || t_scaled > (ray_max_t * det)))
|
||||
|| (det < 0.0 && (t_scaled >= 0.0 || t_scaled < (ray_max_t * det)))
|
||||
{
|
||||
return None;
|
||||
}
|
||||
|
|
|
@ -8,12 +8,14 @@ use crate::{
|
|||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::{cross, dot, Matrix4x4, Normal, Point},
|
||||
ray::{AccelRay, Ray},
|
||||
ray::{RayBatch, RayStack},
|
||||
shading::SurfaceShader,
|
||||
};
|
||||
|
||||
use super::{triangle, Surface, SurfaceIntersection, SurfaceIntersectionData};
|
||||
|
||||
const MAX_LEAF_TRIANGLE_COUNT: usize = 3;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct TriangleMesh<'a> {
|
||||
time_sample_count: usize,
|
||||
|
@ -93,7 +95,7 @@ impl<'a> TriangleMesh<'a> {
|
|||
};
|
||||
|
||||
// Build BVH
|
||||
let accel = BVH4::from_objects(arena, &mut indices[..], 3, |tri| {
|
||||
let accel = BVH4::from_objects(arena, &mut indices[..], MAX_LEAF_TRIANGLE_COUNT, |tri| {
|
||||
&bounds
|
||||
[(tri.3 as usize * time_sample_count)..((tri.3 as usize + 1) * time_sample_count)]
|
||||
});
|
||||
|
@ -117,8 +119,8 @@ impl<'a> Boundable for TriangleMesh<'a> {
|
|||
impl<'a> Surface for TriangleMesh<'a> {
|
||||
fn intersect_rays(
|
||||
&self,
|
||||
accel_rays: &mut [AccelRay],
|
||||
wrays: &[Ray],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
isects: &mut [SurfaceIntersection],
|
||||
shader: &SurfaceShader,
|
||||
space: &[Matrix4x4],
|
||||
|
@ -131,144 +133,177 @@ impl<'a> Surface for TriangleMesh<'a> {
|
|||
};
|
||||
|
||||
self.accel
|
||||
.traverse(&mut accel_rays[..], self.indices, |tri_indices, rs| {
|
||||
// For static triangles with static transforms, cache them.
|
||||
let is_cached = self.time_sample_count == 1 && space.len() <= 1;
|
||||
let mut tri = if is_cached {
|
||||
let tri = (
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
);
|
||||
if space.is_empty() {
|
||||
tri
|
||||
} else {
|
||||
(
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
)
|
||||
}
|
||||
} else {
|
||||
unsafe { std::mem::uninitialized() }
|
||||
};
|
||||
.traverse(rays, ray_stack, |idx_range, rays, ray_stack| {
|
||||
let tri_count = idx_range.end - idx_range.start;
|
||||
|
||||
// Test each ray against the current triangle.
|
||||
for r in rs {
|
||||
let wr = &wrays[r.id as usize];
|
||||
// Build the triangle cache if we can!
|
||||
let is_cached = ray_stack.ray_count_in_next_task() >= tri_count
|
||||
&& self.time_sample_count == 1
|
||||
&& space.len() <= 1;
|
||||
let mut tri_cache = [unsafe { std::mem::uninitialized() }; MAX_LEAF_TRIANGLE_COUNT];
|
||||
if is_cached {
|
||||
for tri_idx in idx_range.clone() {
|
||||
let i = tri_idx - idx_range.start;
|
||||
let tri_indices = self.indices[tri_idx];
|
||||
|
||||
// Get triangle if necessary
|
||||
if !is_cached {
|
||||
tri = if self.time_sample_count == 1 {
|
||||
// No deformation motion blur, so fast-path it.
|
||||
(
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
)
|
||||
} else {
|
||||
// Deformation motion blur, need to interpolate.
|
||||
let p0_slice = &self.vertices[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let p1_slice = &self.vertices[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let p2_slice = &self.vertices[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let p0 = lerp_slice(p0_slice, wr.time);
|
||||
let p1 = lerp_slice(p1_slice, wr.time);
|
||||
let p2 = lerp_slice(p2_slice, wr.time);
|
||||
|
||||
(p0, p1, p2)
|
||||
};
|
||||
}
|
||||
|
||||
// Transform triangle if necessary, and get transform space.
|
||||
let mat_space = if !space.is_empty() {
|
||||
if space.len() > 1 {
|
||||
// Per-ray transform, for motion blur
|
||||
let mat_space = lerp_slice(space, wr.time).inverse();
|
||||
tri = (tri.0 * mat_space, tri.1 * mat_space, tri.2 * mat_space);
|
||||
mat_space
|
||||
} else {
|
||||
// Same transform for all rays
|
||||
if !is_cached {
|
||||
tri = (
|
||||
tri.0 * static_mat_space,
|
||||
tri.1 * static_mat_space,
|
||||
tri.2 * static_mat_space,
|
||||
);
|
||||
}
|
||||
static_mat_space
|
||||
}
|
||||
} else {
|
||||
// No transforms
|
||||
Matrix4x4::new()
|
||||
};
|
||||
|
||||
// Test ray against triangle
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(wr, tri) {
|
||||
if t < r.max_t {
|
||||
if r.is_occlusion() {
|
||||
isects[r.id as usize] = SurfaceIntersection::Occlude;
|
||||
r.mark_done();
|
||||
} else {
|
||||
// Calculate intersection point and error magnitudes
|
||||
let (pos, pos_err) = triangle::surface_point(tri, (b0, b1, b2));
|
||||
|
||||
// Calculate geometric surface normal
|
||||
let geo_normal = cross(tri.0 - tri.1, tri.0 - tri.2).into_normal();
|
||||
|
||||
// Calculate interpolated surface normal, if any
|
||||
let shading_normal = if let Some(normals) = self.normals {
|
||||
let n0_slice = &normals[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let n1_slice = &normals[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let n2_slice = &normals[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let n0 = lerp_slice(n0_slice, wr.time).normalized();
|
||||
let n1 = lerp_slice(n1_slice, wr.time).normalized();
|
||||
let n2 = lerp_slice(n2_slice, wr.time).normalized();
|
||||
|
||||
let s_nor = ((n0 * b0) + (n1 * b1) + (n2 * b2)) * mat_space;
|
||||
if dot(s_nor, geo_normal) >= 0.0 {
|
||||
s_nor
|
||||
} else {
|
||||
-s_nor
|
||||
}
|
||||
} else {
|
||||
geo_normal
|
||||
};
|
||||
|
||||
let intersection_data = SurfaceIntersectionData {
|
||||
incoming: wr.dir,
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
};
|
||||
|
||||
// Fill in intersection data
|
||||
isects[r.id as usize] = SurfaceIntersection::Hit {
|
||||
intersection_data: intersection_data,
|
||||
closure: shader.shade(&intersection_data, wr.time),
|
||||
};
|
||||
r.max_t = t;
|
||||
}
|
||||
// For static triangles with static transforms, cache them.
|
||||
tri_cache[i] = (
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
);
|
||||
if !space.is_empty() {
|
||||
tri_cache[i].0 = tri_cache[i].0 * static_mat_space;
|
||||
tri_cache[i].1 = tri_cache[i].1 * static_mat_space;
|
||||
tri_cache[i].2 = tri_cache[i].2 * static_mat_space;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test each ray against the triangles.
|
||||
ray_stack.do_next_task(|ray_idx| {
|
||||
let ray_idx = ray_idx as usize;
|
||||
|
||||
if rays.is_done(ray_idx) {
|
||||
return;
|
||||
}
|
||||
|
||||
let ray_time = rays.time(ray_idx);
|
||||
|
||||
// Calculate the ray space, if necessary.
|
||||
let mat_space = if space.len() > 1 {
|
||||
// Per-ray transform, for motion blur
|
||||
lerp_slice(space, ray_time).inverse()
|
||||
} else {
|
||||
static_mat_space
|
||||
};
|
||||
|
||||
// Iterate through the triangles and test the ray against them.
|
||||
let mut non_shadow_hit = false;
|
||||
let mut hit_tri = unsafe { std::mem::uninitialized() };
|
||||
let mut hit_tri_indices = unsafe { std::mem::uninitialized() };
|
||||
let mut hit_tri_data = unsafe { std::mem::uninitialized() };
|
||||
let ray_pre = triangle::RayTriPrecompute::new(rays.dir(ray_idx));
|
||||
for tri_idx in idx_range.clone() {
|
||||
let tri_indices = self.indices[tri_idx];
|
||||
|
||||
// Get triangle if necessary
|
||||
let tri = if is_cached {
|
||||
let i = tri_idx - idx_range.start;
|
||||
tri_cache[i]
|
||||
} else {
|
||||
let mut tri = if self.time_sample_count == 1 {
|
||||
// No deformation motion blur, so fast-path it.
|
||||
(
|
||||
self.vertices[tri_indices.0 as usize],
|
||||
self.vertices[tri_indices.1 as usize],
|
||||
self.vertices[tri_indices.2 as usize],
|
||||
)
|
||||
} else {
|
||||
// Deformation motion blur, need to interpolate.
|
||||
let p0_slice = &self.vertices[(tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let p1_slice = &self.vertices[(tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let p2_slice = &self.vertices[(tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let p0 = lerp_slice(p0_slice, ray_time);
|
||||
let p1 = lerp_slice(p1_slice, ray_time);
|
||||
let p2 = lerp_slice(p2_slice, ray_time);
|
||||
|
||||
(p0, p1, p2)
|
||||
};
|
||||
|
||||
if !space.is_empty() {
|
||||
tri.0 = tri.0 * mat_space;
|
||||
tri.1 = tri.1 * mat_space;
|
||||
tri.2 = tri.2 * mat_space;
|
||||
}
|
||||
|
||||
tri
|
||||
};
|
||||
|
||||
// Test ray against triangle
|
||||
if let Some((t, b0, b1, b2)) = triangle::intersect_ray(
|
||||
rays.orig(ray_idx),
|
||||
ray_pre,
|
||||
rays.max_t(ray_idx),
|
||||
tri,
|
||||
) {
|
||||
if rays.is_occlusion(ray_idx) {
|
||||
isects[ray_idx] = SurfaceIntersection::Occlude;
|
||||
rays.mark_done(ray_idx);
|
||||
break;
|
||||
} else {
|
||||
non_shadow_hit = true;
|
||||
rays.set_max_t(ray_idx, t);
|
||||
hit_tri = tri;
|
||||
hit_tri_indices = tri_indices;
|
||||
hit_tri_data = (t, b0, b1, b2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate intersection data if necessary.
|
||||
if non_shadow_hit {
|
||||
let (t, b0, b1, b2) = hit_tri_data;
|
||||
|
||||
// Calculate intersection point and error magnitudes
|
||||
let (pos, pos_err) = triangle::surface_point(hit_tri, (b0, b1, b2));
|
||||
|
||||
// Calculate geometric surface normal
|
||||
let geo_normal =
|
||||
cross(hit_tri.0 - hit_tri.1, hit_tri.0 - hit_tri.2).into_normal();
|
||||
|
||||
// Calculate interpolated surface normal, if any
|
||||
let shading_normal = if let Some(normals) = self.normals {
|
||||
let n0_slice = &normals[(hit_tri_indices.0 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.0 as usize + 1) * self.time_sample_count)];
|
||||
let n1_slice = &normals[(hit_tri_indices.1 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.1 as usize + 1) * self.time_sample_count)];
|
||||
let n2_slice = &normals[(hit_tri_indices.2 as usize
|
||||
* self.time_sample_count)
|
||||
..((hit_tri_indices.2 as usize + 1) * self.time_sample_count)];
|
||||
|
||||
let n0 = lerp_slice(n0_slice, ray_time).normalized();
|
||||
let n1 = lerp_slice(n1_slice, ray_time).normalized();
|
||||
let n2 = lerp_slice(n2_slice, ray_time).normalized();
|
||||
|
||||
let s_nor = ((n0 * b0) + (n1 * b1) + (n2 * b2)) * mat_space;
|
||||
if dot(s_nor, geo_normal) >= 0.0 {
|
||||
s_nor
|
||||
} else {
|
||||
-s_nor
|
||||
}
|
||||
} else {
|
||||
geo_normal
|
||||
};
|
||||
|
||||
let intersection_data = SurfaceIntersectionData {
|
||||
incoming: rays.dir(ray_idx),
|
||||
t: t,
|
||||
pos: pos,
|
||||
pos_err: pos_err,
|
||||
nor: shading_normal,
|
||||
nor_g: geo_normal,
|
||||
local_space: mat_space,
|
||||
sample_pdf: 0.0,
|
||||
};
|
||||
|
||||
// Fill in intersection data
|
||||
isects[ray_idx] = SurfaceIntersection::Hit {
|
||||
intersection_data: intersection_data,
|
||||
closure: shader.shade(&intersection_data, ray_time),
|
||||
};
|
||||
}
|
||||
});
|
||||
ray_stack.pop_task();
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
197
src/tracer.rs
197
src/tracer.rs
|
@ -1,10 +1,11 @@
|
|||
use std::iter;
|
||||
|
||||
use crate::{
|
||||
algorithm::partition,
|
||||
accel::ray_code,
|
||||
color::{rec709_to_xyz, Color},
|
||||
lerp::lerp_slice,
|
||||
ray::{AccelRay, Ray},
|
||||
math::Matrix4x4,
|
||||
ray::{RayBatch, RayStack},
|
||||
scene::{Assembly, InstanceType, Object},
|
||||
shading::{SimpleSurfaceShader, SurfaceShader},
|
||||
surface::SurfaceIntersection,
|
||||
|
@ -12,14 +13,16 @@ use crate::{
|
|||
};
|
||||
|
||||
pub struct Tracer<'a> {
|
||||
rays: Vec<AccelRay>,
|
||||
ray_trace_count: u64,
|
||||
ray_stack: RayStack,
|
||||
inner: TracerInner<'a>,
|
||||
}
|
||||
|
||||
impl<'a> Tracer<'a> {
|
||||
pub fn from_assembly(assembly: &'a Assembly) -> Tracer<'a> {
|
||||
Tracer {
|
||||
rays: Vec::new(),
|
||||
ray_trace_count: 0,
|
||||
ray_stack: RayStack::new(),
|
||||
inner: TracerInner {
|
||||
root: assembly,
|
||||
xform_stack: TransformStack::new(),
|
||||
|
@ -28,17 +31,13 @@ impl<'a> Tracer<'a> {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn trace<'b>(&'b mut self, wrays: &[Ray]) -> &'b [SurfaceIntersection] {
|
||||
self.rays.clear();
|
||||
self.rays.reserve(wrays.len());
|
||||
let mut ids = 0..(wrays.len() as u32);
|
||||
self.rays.extend(
|
||||
wrays
|
||||
.iter()
|
||||
.map(|wr| AccelRay::new(wr, ids.next().unwrap())),
|
||||
);
|
||||
pub fn trace<'b>(&'b mut self, rays: &mut RayBatch) -> &'b [SurfaceIntersection] {
|
||||
self.ray_trace_count += rays.len() as u64;
|
||||
self.inner.trace(rays, &mut self.ray_stack)
|
||||
}
|
||||
|
||||
self.inner.trace(wrays, &mut self.rays[..])
|
||||
pub fn rays_traced(&self) -> u64 {
|
||||
self.ray_trace_count
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -49,16 +48,37 @@ struct TracerInner<'a> {
|
|||
}
|
||||
|
||||
impl<'a> TracerInner<'a> {
|
||||
fn trace<'b>(&'b mut self, wrays: &[Ray], rays: &mut [AccelRay]) -> &'b [SurfaceIntersection] {
|
||||
fn trace<'b>(
|
||||
&'b mut self,
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
) -> &'b [SurfaceIntersection] {
|
||||
ray_stack.clear();
|
||||
|
||||
// Ready the isects
|
||||
self.isects.clear();
|
||||
self.isects.reserve(wrays.len());
|
||||
self.isects.reserve(rays.len());
|
||||
self.isects
|
||||
.extend(iter::repeat(SurfaceIntersection::Miss).take(wrays.len()));
|
||||
.extend(iter::repeat(SurfaceIntersection::Miss).take(rays.len()));
|
||||
|
||||
let mut ray_sets = split_rays_by_direction(&mut rays[..]);
|
||||
for ray_set in ray_sets.iter_mut().filter(|ray_set| !ray_set.is_empty()) {
|
||||
self.trace_assembly(self.root, wrays, ray_set);
|
||||
// Prep the accel part of the rays.
|
||||
{
|
||||
let ident = Matrix4x4::new();
|
||||
for i in 0..rays.len() {
|
||||
rays.update_local(i, &ident);
|
||||
}
|
||||
}
|
||||
|
||||
// Divide the rays into 8 different lanes by direction.
|
||||
ray_stack.ensure_lane_count(8);
|
||||
for i in 0..rays.len() {
|
||||
ray_stack.push_ray_index(i, ray_code(rays.dir(i)));
|
||||
}
|
||||
ray_stack.push_lanes_to_tasks(&[0, 1, 2, 3, 4, 5, 6, 7]);
|
||||
|
||||
// Trace each of the 8 lanes separately.
|
||||
while !ray_stack.is_empty() {
|
||||
self.trace_assembly(self.root, rays, ray_stack);
|
||||
}
|
||||
|
||||
&self.isects
|
||||
|
@ -67,82 +87,43 @@ impl<'a> TracerInner<'a> {
|
|||
fn trace_assembly<'b>(
|
||||
&'b mut self,
|
||||
assembly: &Assembly,
|
||||
wrays: &[Ray],
|
||||
accel_rays: &mut [AccelRay],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
) {
|
||||
assembly
|
||||
.object_accel
|
||||
.traverse(&mut accel_rays[..], &assembly.instances[..], |inst, rs| {
|
||||
.traverse(rays, ray_stack, |idx_range, rays, ray_stack| {
|
||||
let inst = &assembly.instances[idx_range.start];
|
||||
|
||||
// Transform rays if needed
|
||||
if let Some((xstart, xend)) = inst.transform_indices {
|
||||
// Push transforms to stack
|
||||
self.xform_stack.push(&assembly.xforms[xstart..xend]);
|
||||
|
||||
// Do transforms
|
||||
// TODO: re-divide rays based on direction (maybe?).
|
||||
let xforms = self.xform_stack.top();
|
||||
for ray in &mut rs[..] {
|
||||
let id = ray.id;
|
||||
let t = ray.time;
|
||||
ray.update_from_xformed_world_ray(
|
||||
&wrays[id as usize],
|
||||
&lerp_slice(xforms, t),
|
||||
);
|
||||
}
|
||||
ray_stack.do_next_task(|ray_idx| {
|
||||
let t = rays.time(ray_idx);
|
||||
rays.update_local(ray_idx, &lerp_slice(xforms, t));
|
||||
});
|
||||
ray_stack.duplicate_next_task();
|
||||
}
|
||||
|
||||
// Trace rays
|
||||
{
|
||||
// This is kind of weird looking, but what we're doing here is
|
||||
// splitting the rays up based on direction if they were
|
||||
// transformed, and not splitting them up if they weren't
|
||||
// transformed.
|
||||
// But to keep the actual tracing code in one place (DRY),
|
||||
// we map both cases to an array slice that contains slices of
|
||||
// ray arrays. Gah... that's confusing even when explained.
|
||||
// TODO: do this in a way that's less confusing. Probably split
|
||||
// the tracing code out into a trace_instance() method or
|
||||
// something.
|
||||
let mut tmp = if inst.transform_indices.is_some() {
|
||||
split_rays_by_direction(rs)
|
||||
} else {
|
||||
[
|
||||
&mut rs[..],
|
||||
&mut [],
|
||||
&mut [],
|
||||
&mut [],
|
||||
&mut [],
|
||||
&mut [],
|
||||
&mut [],
|
||||
&mut [],
|
||||
]
|
||||
};
|
||||
let ray_sets = if inst.transform_indices.is_some() {
|
||||
&mut tmp[..]
|
||||
} else {
|
||||
&mut tmp[..1]
|
||||
};
|
||||
match inst.instance_type {
|
||||
InstanceType::Object => {
|
||||
self.trace_object(
|
||||
&assembly.objects[inst.data_index],
|
||||
inst.surface_shader_index
|
||||
.map(|i| assembly.surface_shaders[i]),
|
||||
rays,
|
||||
ray_stack,
|
||||
);
|
||||
}
|
||||
|
||||
// Loop through the split ray slices and trace them
|
||||
for ray_set in ray_sets.iter_mut().filter(|ray_set| !ray_set.is_empty()) {
|
||||
match inst.instance_type {
|
||||
InstanceType::Object => {
|
||||
self.trace_object(
|
||||
&assembly.objects[inst.data_index],
|
||||
inst.surface_shader_index
|
||||
.map(|i| assembly.surface_shaders[i]),
|
||||
wrays,
|
||||
ray_set,
|
||||
);
|
||||
}
|
||||
|
||||
InstanceType::Assembly => {
|
||||
self.trace_assembly(
|
||||
&assembly.assemblies[inst.data_index],
|
||||
wrays,
|
||||
ray_set,
|
||||
);
|
||||
}
|
||||
}
|
||||
InstanceType::Assembly => {
|
||||
self.trace_assembly(&assembly.assemblies[inst.data_index], rays, ray_stack);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -154,19 +135,15 @@ impl<'a> TracerInner<'a> {
|
|||
// Undo transforms
|
||||
let xforms = self.xform_stack.top();
|
||||
if !xforms.is_empty() {
|
||||
for ray in &mut rs[..] {
|
||||
let id = ray.id;
|
||||
let t = ray.time;
|
||||
ray.update_from_xformed_world_ray(
|
||||
&wrays[id as usize],
|
||||
&lerp_slice(xforms, t),
|
||||
);
|
||||
}
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let t = rays.time(ray_idx);
|
||||
rays.update_local(ray_idx, &lerp_slice(xforms, t));
|
||||
});
|
||||
} else {
|
||||
for ray in &mut rs[..] {
|
||||
let id = ray.id;
|
||||
ray.update_from_world_ray(&wrays[id as usize]);
|
||||
}
|
||||
let ident = Matrix4x4::new();
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
rays.update_local(ray_idx, &ident);
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
@ -176,8 +153,8 @@ impl<'a> TracerInner<'a> {
|
|||
&'b mut self,
|
||||
obj: &Object,
|
||||
surface_shader: Option<&SurfaceShader>,
|
||||
wrays: &[Ray],
|
||||
rays: &mut [AccelRay],
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
) {
|
||||
match *obj {
|
||||
Object::Surface(surface) => {
|
||||
|
@ -188,7 +165,7 @@ impl<'a> TracerInner<'a> {
|
|||
|
||||
surface.intersect_rays(
|
||||
rays,
|
||||
wrays,
|
||||
ray_stack,
|
||||
&mut self.isects,
|
||||
shader,
|
||||
self.xform_stack.top(),
|
||||
|
@ -203,7 +180,7 @@ impl<'a> TracerInner<'a> {
|
|||
|
||||
surface.intersect_rays(
|
||||
rays,
|
||||
wrays,
|
||||
ray_stack,
|
||||
&mut self.isects,
|
||||
&bogus_shader,
|
||||
self.xform_stack.top(),
|
||||
|
@ -212,27 +189,3 @@ impl<'a> TracerInner<'a> {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn split_rays_by_direction(rays: &mut [AccelRay]) -> [&mut [AccelRay]; 8] {
|
||||
// | | | | | | | | |
|
||||
// s1 s2 s3 s4 s5 s6 s7
|
||||
let s4 = partition(&mut rays[..], |r| r.dir_inv.x() >= 0.0);
|
||||
|
||||
let s2 = partition(&mut rays[..s4], |r| r.dir_inv.y() >= 0.0);
|
||||
let s6 = s4 + partition(&mut rays[s4..], |r| r.dir_inv.y() >= 0.0);
|
||||
|
||||
let s1 = partition(&mut rays[..s2], |r| r.dir_inv.z() >= 0.0);
|
||||
let s3 = s2 + partition(&mut rays[s2..s4], |r| r.dir_inv.z() >= 0.0);
|
||||
let s5 = s4 + partition(&mut rays[s4..s6], |r| r.dir_inv.z() >= 0.0);
|
||||
let s7 = s6 + partition(&mut rays[s6..], |r| r.dir_inv.z() >= 0.0);
|
||||
|
||||
let (rest, rs7) = rays.split_at_mut(s7);
|
||||
let (rest, rs6) = rest.split_at_mut(s6);
|
||||
let (rest, rs5) = rest.split_at_mut(s5);
|
||||
let (rest, rs4) = rest.split_at_mut(s4);
|
||||
let (rest, rs3) = rest.split_at_mut(s3);
|
||||
let (rest, rs2) = rest.split_at_mut(s2);
|
||||
let (rs0, rs1) = rest.split_at_mut(s1);
|
||||
|
||||
[rs0, rs1, rs2, rs3, rs4, rs5, rs6, rs7]
|
||||
}
|
||||
|
|
|
@ -620,6 +620,29 @@ mod x86_64_sse {
|
|||
}
|
||||
|
||||
impl Bool4 {
|
||||
#[inline(always)]
|
||||
pub fn new(a: bool, b: bool, c: bool, d: bool) -> Bool4 {
|
||||
use std::arch::x86_64::_mm_set_ps;
|
||||
Bool4 {
|
||||
data: unsafe {
|
||||
_mm_set_ps(
|
||||
if d { 1.0 } else { 0.0 },
|
||||
if c { 1.0 } else { 0.0 },
|
||||
if b { 1.0 } else { 0.0 },
|
||||
if a { 1.0 } else { 0.0 },
|
||||
)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn new_false() -> Bool4 {
|
||||
use std::arch::x86_64::_mm_set1_ps;
|
||||
Bool4 {
|
||||
data: unsafe { _mm_set1_ps(0.0) },
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the value of the nth element.
|
||||
#[inline(always)]
|
||||
pub fn get_n(&self, n: usize) -> bool {
|
||||
|
@ -637,24 +660,34 @@ mod x86_64_sse {
|
|||
self.get_n(0)
|
||||
}
|
||||
|
||||
/// Returns the value of the 1th element.
|
||||
/// Returns the value of the 1st element.
|
||||
#[inline(always)]
|
||||
pub fn get_1(&self) -> bool {
|
||||
self.get_n(1)
|
||||
}
|
||||
|
||||
/// Returns the value of the 2th element.
|
||||
/// Returns the value of the 2nd element.
|
||||
#[inline(always)]
|
||||
pub fn get_2(&self) -> bool {
|
||||
self.get_n(2)
|
||||
}
|
||||
|
||||
/// Returns the value of the 3th element.
|
||||
/// Returns the value of the 3rd element.
|
||||
#[inline(always)]
|
||||
pub fn get_3(&self) -> bool {
|
||||
self.get_n(3)
|
||||
}
|
||||
|
||||
/// Returns whether all four bools are false.
|
||||
///
|
||||
/// This is the `NOT` operation on the result of `OR`ing all the
|
||||
/// contained bools. If even one bool is true, this returns false.
|
||||
#[inline(always)]
|
||||
pub fn is_all_false(&self) -> bool {
|
||||
let a = unsafe { *(&self.data as *const __m128 as *const u128) };
|
||||
a == 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn to_bitmask(&self) -> u8 {
|
||||
let a = unsafe { *(&self.data as *const __m128 as *const u8).offset(0) };
|
||||
|
@ -1236,21 +1269,25 @@ mod fallback {
|
|||
det
|
||||
}
|
||||
|
||||
/// Essentially a tuple of four bools, which will use SIMD operations
|
||||
/// where possible on a platform.
|
||||
#[cfg(feature = "simd_perf")]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Bool4 {
|
||||
data: bool32fx4,
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "simd_perf"))]
|
||||
/// Essentially a tuple of four bools.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Bool4 {
|
||||
data: [bool; 4],
|
||||
}
|
||||
|
||||
impl Bool4 {
|
||||
#[inline(always)]
|
||||
pub fn new(a: bool, b: bool, c: bool, d: bool) -> Bool4 {
|
||||
Bool4 { data: [a, b, c, d] }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn new_false() -> Bool4 {
|
||||
Bool4 {
|
||||
data: [false, false, false, false],
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the value of the nth element.
|
||||
#[inline(always)]
|
||||
pub fn get_n(self, n: usize) -> bool {
|
||||
|
@ -1285,6 +1322,15 @@ mod fallback {
|
|||
self.get_n(3)
|
||||
}
|
||||
|
||||
/// Returns whether all four bools are false.
|
||||
///
|
||||
/// This is the `NOT` operation on the result of `OR`ing all the
|
||||
/// contained bools. If even one bool is true, this returns false.
|
||||
#[inline(always)]
|
||||
pub fn is_all_false(&self) -> bool {
|
||||
!(self.data[0] | self.data[1] | self.data[2] | self.data[3])
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn to_bitmask(self) -> u8 {
|
||||
(self.get_0() as u8)
|
||||
|
@ -1565,4 +1611,10 @@ mod tests {
|
|||
|
||||
assert_eq!(r, 0b00001010);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bool4_is_all_false() {
|
||||
assert_eq!(true, Bool4::new(false, false, false, false).is_all_false());
|
||||
assert_eq!(false, Bool4::new(false, false, true, false).is_all_false());
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user