Switch to colorbox and jakob upsampling for color handling.

This commit is contained in:
Nathan Vegdahl 2022-08-02 00:18:12 -07:00
parent 5d246e66fa
commit 608fe8bda1
8 changed files with 45 additions and 200 deletions

3
Cargo.lock generated
View File

@ -126,6 +126,9 @@ dependencies = [
[[package]]
name = "color"
version = "0.1.0"
dependencies = [
"colorbox",
]
[[package]]
name = "colorbox"

View File

@ -1,13 +1,8 @@
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign};
use crate::math::Float4;
pub use color::{
rec709_e_to_xyz, rec709_to_xyz, xyz_to_aces_ap0, xyz_to_aces_ap0_e, xyz_to_rec709,
xyz_to_rec709_e,
};
use compact::fluv::fluv32;
use half::f16;
use spectral_upsampling::meng::{spectrum_xyz_to_p_4, EQUAL_ENERGY_REFLECTANCE};
use crate::{lerp::Lerp, math::fast_exp};
@ -600,8 +595,14 @@ impl DivAssign<f32> for XYZ {
/// Colours" by Meng et al.
#[inline(always)]
fn xyz_to_spectrum_4(xyz: (f32, f32, f32), wavelengths: Float4) -> Float4 {
spectrum_xyz_to_p_4(wavelengths, xyz) * Float4::splat(1.0 / EQUAL_ENERGY_REFLECTANCE)
// aces_to_spectrum_p4(wavelengths, xyz_to_aces_ap0_e(xyz))
use spectral_upsampling as su;
// su::meng::spectrum_xyz_to_p_4(wavelengths, xyz)
// * Float4::splat(1.0 / su::meng::EQUAL_ENERGY_REFLECTANCE)
su::jakob::rec2020_to_spectrum_p4(wavelengths, color::xyz_to_rec2020_e(xyz))
// su::jakob::rec709_to_spectrum_p4(wavelengths, color::xyz_to_rec709_e(xyz))
}
/// Close analytic approximations of the CIE 1931 XYZ color curves.

View File

@ -13,7 +13,9 @@ use std::{
use half::f16;
use crate::color::{xyz_to_rec709_e, XYZ};
pub use color::{rec709_e_to_xyz, xyz_to_rec709_e};
use crate::color::XYZ;
#[derive(Debug)]
#[allow(clippy::type_complexity)]

View File

@ -6,14 +6,11 @@ use nom::{combinator::all_consuming, sequence::tuple, IResult};
use kioku::Arena;
use color::rec709_e_to_xyz;
use crate::{
camera::Camera,
color::{rec709_e_to_xyz, Color},
light::WorldLightSource,
math::Xform,
renderer::Renderer,
scene::Scene,
scene::World,
camera::Camera, color::Color, light::WorldLightSource, math::Xform, renderer::Renderer,
scene::Scene, scene::World,
};
use super::{

View File

@ -285,8 +285,7 @@ impl<'a> Renderer<'a> {
// Pre-calculate base64 encoding if needed
let base64_enc = if do_blender_output {
use crate::color::xyz_to_rec709_e;
Some(img_bucket.rgba_base64(xyz_to_rec709_e))
Some(img_bucket.rgba_base64(color::xyz_to_rec709_e))
} else {
None
};

View File

@ -1,5 +1,5 @@
use crate::{
color::{rec709_to_xyz, Color},
color::Color,
lerp::lerp_slice,
math::XformFull,
ray::{LocalRay, Ray},
@ -109,7 +109,7 @@ impl<'a> Tracer<'a> {
match *obj {
Object::Surface(surface) => {
let unassigned_shader = SimpleSurfaceShader::Emit {
color: Color::new_xyz(rec709_to_xyz((1.0, 0.0, 1.0))),
color: Color::new_xyz(color::rec709_to_xyz((1.0, 0.0, 1.0))),
};
let shader = surface_shader.unwrap_or(&unassigned_shader);
@ -119,7 +119,7 @@ impl<'a> Tracer<'a> {
Object::SurfaceLight(surface) => {
// Lights don't use shaders
let bogus_shader = SimpleSurfaceShader::Emit {
color: Color::new_xyz(rec709_to_xyz((1.0, 0.0, 1.0))),
color: Color::new_xyz(color::rec709_to_xyz((1.0, 0.0, 1.0))),
};
surface.intersect_ray(ray, local_ray, space, isect, &bogus_shader);

View File

@ -6,6 +6,9 @@ edition = "2018"
license = "MIT, Apache 2.0"
build = "build.rs"
[build-dependencies]
colorbox = "0.3"
[lib]
name = "color"
path = "src/lib.rs"

View File

@ -1,76 +1,46 @@
use std::{env, fs::File, io::Write, path::Path};
#[derive(Copy, Clone)]
struct Chromaticities {
r: (f64, f64),
g: (f64, f64),
b: (f64, f64),
w: (f64, f64),
}
use colorbox::{
chroma::{self, Chromaticities},
matrix::{invert, rgb_to_xyz_matrix, xyz_chromatic_adaptation_matrix, AdaptationMethod},
matrix_compose,
};
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
// Rec709
{
let chroma = Chromaticities {
r: (0.640, 0.330),
g: (0.300, 0.600),
b: (0.150, 0.060),
w: (0.3127, 0.3290),
};
let dest_path = Path::new(&out_dir).join("rec709_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("rec709", chroma, &mut f);
write_conversion_functions("rec709", chroma::REC709, &mut f);
}
// Rec2020
{
let chroma = Chromaticities {
r: (0.708, 0.292),
g: (0.170, 0.797),
b: (0.131, 0.046),
w: (0.3127, 0.3290),
};
let dest_path = Path::new(&out_dir).join("rec2020_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("rec2020", chroma, &mut f);
write_conversion_functions("rec2020", chroma::REC2020, &mut f);
}
// ACES AP0
{
let chroma = Chromaticities {
r: (0.73470, 0.26530),
g: (0.00000, 1.00000),
b: (0.00010, -0.07700),
w: (0.32168, 0.33767),
};
let dest_path = Path::new(&out_dir).join("aces_ap0_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("aces_ap0", chroma, &mut f);
write_conversion_functions("aces_ap0", chroma::ACES_AP0, &mut f);
}
// ACES AP1
{
let chroma = Chromaticities {
r: (0.713, 0.293),
g: (0.165, 0.830),
b: (0.128, 0.044),
w: (0.32168, 0.33767),
};
let dest_path = Path::new(&out_dir).join("aces_ap1_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("aces_ap1", chroma, &mut f);
write_conversion_functions("aces_ap1", chroma::ACES_AP1, &mut f);
}
}
/// Generates conversion functions for the given rgb to xyz transform matrix.
fn write_conversion_functions(space_name: &str, chroma: Chromaticities, f: &mut File) {
let to_xyz = rgb_to_xyz(chroma, 1.0);
let to_xyz = rgb_to_xyz_matrix(chroma);
f.write_all(
format!(
@ -99,7 +69,7 @@ pub fn {}_to_xyz(rgb: (f32, f32, f32)) -> (f32, f32, f32) {{
)
.unwrap();
let inv = inverse(to_xyz);
let inv = invert(to_xyz).unwrap();
f.write_all(
format!(
r#"
@ -127,12 +97,14 @@ pub fn xyz_to_{}(xyz: (f32, f32, f32)) -> (f32, f32, f32) {{
)
.unwrap();
let e_chroma = {
let mut e_chroma = chroma;
e_chroma.w = (1.0 / 3.0, 1.0 / 3.0);
e_chroma
};
let e_to_xyz = rgb_to_xyz(e_chroma, 1.0);
let e_to_xyz = matrix_compose!(
rgb_to_xyz_matrix(chroma),
xyz_chromatic_adaptation_matrix(
chroma.w,
(1.0 / 3.0, 1.0 / 3.0),
AdaptationMethod::Bradford,
),
);
f.write_all(
format!(
r#"
@ -160,7 +132,7 @@ pub fn {}_e_to_xyz(rgb: (f32, f32, f32)) -> (f32, f32, f32) {{
)
.unwrap();
let inv_e = inverse(e_to_xyz);
let inv_e = invert(e_to_xyz).unwrap();
f.write_all(
format!(
r#"
@ -188,135 +160,3 @@ pub fn xyz_to_{}_e(xyz: (f32, f32, f32)) -> (f32, f32, f32) {{
)
.unwrap();
}
/// Port of the RGBtoXYZ function from the ACES CTL reference implementation.
/// See lib/IlmCtlMath/CtlColorSpace.cpp in the CTL reference implementation.
///
/// This takes the chromaticities of an RGB colorspace and generates a
/// transform matrix from that space to XYZ.
///
/// * `chroma` is the chromaticities.
/// * `y` is the XYZ "Y" value that should map to RGB (1,1,1)
fn rgb_to_xyz(chroma: Chromaticities, y: f64) -> [[f64; 3]; 3] {
// X and Z values of RGB value (1, 1, 1), or "white"
let x = chroma.w.0 * y / chroma.w.1;
let z = (1.0 - chroma.w.0 - chroma.w.1) * y / chroma.w.1;
// Scale factors for matrix rows
let d = chroma.r.0 * (chroma.b.1 - chroma.g.1)
+ chroma.b.0 * (chroma.g.1 - chroma.r.1)
+ chroma.g.0 * (chroma.r.1 - chroma.b.1);
let sr = (x * (chroma.b.1 - chroma.g.1)
- chroma.g.0 * (y * (chroma.b.1 - 1.0) + chroma.b.1 * (x + z))
+ chroma.b.0 * (y * (chroma.g.1 - 1.0) + chroma.g.1 * (x + z)))
/ d;
let sg = (x * (chroma.r.1 - chroma.b.1)
+ chroma.r.0 * (y * (chroma.b.1 - 1.0) + chroma.b.1 * (x + z))
- chroma.b.0 * (y * (chroma.r.1 - 1.0) + chroma.r.1 * (x + z)))
/ d;
let sb = (x * (chroma.g.1 - chroma.r.1)
- chroma.r.0 * (y * (chroma.g.1 - 1.0) + chroma.g.1 * (x + z))
+ chroma.g.0 * (y * (chroma.r.1 - 1.0) + chroma.r.1 * (x + z)))
/ d;
// Assemble the matrix
let mut mat = [[0.0; 3]; 3];
mat[0][0] = sr * chroma.r.0;
mat[0][1] = sg * chroma.g.0;
mat[0][2] = sb * chroma.b.0;
mat[1][0] = sr * chroma.r.1;
mat[1][1] = sg * chroma.g.1;
mat[1][2] = sb * chroma.b.1;
mat[2][0] = sr * (1.0 - chroma.r.0 - chroma.r.1);
mat[2][1] = sg * (1.0 - chroma.g.0 - chroma.g.1);
mat[2][2] = sb * (1.0 - chroma.b.0 - chroma.b.1);
mat
}
/// Calculates the inverse of the given 3x3 matrix.
///
/// Ported to Rust from `gjInverse()` in IlmBase's Imath/ImathMatrix.h
fn inverse(m: [[f64; 3]; 3]) -> [[f64; 3]; 3] {
let mut s = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]];
let mut t = m;
// Forward elimination
for i in 0..2 {
let mut pivot = i;
let mut pivotsize = t[i][i];
if pivotsize < 0.0 {
pivotsize = -pivotsize;
}
for j in (i + 1)..3 {
let mut tmp = t[j][i];
if tmp < 0.0 {
tmp = -tmp;
}
if tmp > pivotsize {
pivot = j;
pivotsize = tmp;
}
}
if pivotsize == 0.0 {
panic!("Cannot invert singular matrix.");
}
if pivot != i {
for j in 0..3 {
let mut tmp = t[i][j];
t[i][j] = t[pivot][j];
t[pivot][j] = tmp;
tmp = s[i][j];
s[i][j] = s[pivot][j];
s[pivot][j] = tmp;
}
}
for j in (i + 1)..3 {
let f = t[j][i] / t[i][i];
for k in 0..3 {
t[j][k] -= f * t[i][k];
s[j][k] -= f * s[i][k];
}
}
}
// Backward substitution
for i in (0..3).rev() {
let f = t[i][i];
if t[i][i] == 0.0 {
panic!("Cannot invert singular matrix.");
}
for j in 0..3 {
t[i][j] /= f;
s[i][j] /= f;
}
for j in 0..i {
let f = t[j][i];
for k in 0..3 {
t[j][k] -= f * t[i][k];
s[j][k] -= f * s[i][k];
}
}
}
s
}