Start work on new linear algebra library.
This commit is contained in:
parent
e0ee0d6dff
commit
658e4746ca
3
Cargo.lock
generated
3
Cargo.lock
generated
|
@ -1,5 +1,7 @@
|
|||
# This file is automatically @generated by Cargo.
|
||||
# It is not intended for manual editing.
|
||||
version = 3
|
||||
|
||||
[[package]]
|
||||
name = "ansi_term"
|
||||
version = "0.11.0"
|
||||
|
@ -245,7 +247,6 @@ name = "math3d"
|
|||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"approx",
|
||||
"glam",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
|
@ -9,7 +9,5 @@ license = "MIT, Apache 2.0"
|
|||
name = "math3d"
|
||||
path = "src/lib.rs"
|
||||
|
||||
# Local crate dependencies
|
||||
[dependencies]
|
||||
glam = "0.15"
|
||||
approx = "0.4"
|
||||
|
|
|
@ -1,28 +1,34 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
mod normal;
|
||||
mod point;
|
||||
mod transform;
|
||||
mod vector;
|
||||
pub mod mat3x3;
|
||||
pub mod normal;
|
||||
pub mod point;
|
||||
pub mod transform;
|
||||
pub mod transform_dual;
|
||||
pub mod vector;
|
||||
pub mod wide4;
|
||||
|
||||
pub use self::{normal::Normal, point::Point, transform::Transform, vector::Vector};
|
||||
pub use self::{
|
||||
normal::Normal, point::Point, transform::Transform, transform_dual::TransformDual,
|
||||
vector::Vector,
|
||||
};
|
||||
|
||||
/// Trait for calculating dot products.
|
||||
pub trait DotProduct {
|
||||
fn dot(self, other: Self) -> f32;
|
||||
}
|
||||
// /// Trait for calculating dot products.
|
||||
// pub trait DotProduct {
|
||||
// fn dot(self, other: Self) -> f32;
|
||||
// }
|
||||
|
||||
#[inline]
|
||||
pub fn dot<T: DotProduct>(a: T, b: T) -> f32 {
|
||||
a.dot(b)
|
||||
}
|
||||
// #[inline]
|
||||
// pub fn dot<T: DotProduct>(a: T, b: T) -> f32 {
|
||||
// a.dot(b)
|
||||
// }
|
||||
|
||||
/// Trait for calculating cross products.
|
||||
pub trait CrossProduct {
|
||||
fn cross(self, other: Self) -> Self;
|
||||
}
|
||||
// /// Trait for calculating cross products.
|
||||
// pub trait CrossProduct {
|
||||
// fn cross(self, other: Self) -> Self;
|
||||
// }
|
||||
|
||||
#[inline]
|
||||
pub fn cross<T: CrossProduct>(a: T, b: T) -> T {
|
||||
a.cross(b)
|
||||
}
|
||||
// #[inline]
|
||||
// pub fn cross<T: CrossProduct>(a: T, b: T) -> T {
|
||||
// a.cross(b)
|
||||
// }
|
||||
|
|
83
sub_crates/math3d/src/mat3x3.rs
Normal file
83
sub_crates/math3d/src/mat3x3.rs
Normal file
|
@ -0,0 +1,83 @@
|
|||
use std::ops::{Add, Div, Mul};
|
||||
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
/// A 3x3 matrix.
|
||||
///
|
||||
/// Internally this is actually 4x3 to take advantage of SIMD.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[repr(C)]
|
||||
pub(crate) struct Mat3x3(pub(crate) [f32x4; 3]);
|
||||
|
||||
impl Mat3x3 {
|
||||
#[inline(always)]
|
||||
pub fn new(a: f32x4, b: f32x4, c: f32x4) -> Self {
|
||||
Self([a, b, c])
|
||||
}
|
||||
|
||||
pub fn identity() -> Self {
|
||||
Self([
|
||||
f32x4::new(1.0, 0.0, 0.0, 0.0),
|
||||
f32x4::new(0.0, 1.0, 0.0, 0.0),
|
||||
f32x4::new(0.0, 0.0, 1.0, 0.0),
|
||||
])
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
#[inline]
|
||||
pub fn inverse(self) -> Self {
|
||||
todo!()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
#[inline]
|
||||
pub fn inverse_precise(self) -> Self {
|
||||
todo!()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
#[inline]
|
||||
pub fn transpose(self) -> Self {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Mat3x3 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self([
|
||||
self.0[0] + rhs.0[0],
|
||||
self.0[1] + rhs.0[1],
|
||||
self.0[2] + rhs.0[2],
|
||||
])
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for Mat3x3 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, _rhs: Self) -> Self {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<f32> for Mat3x3 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul(self, rhs: f32) -> Self {
|
||||
Self([self.0[0] * rhs, self.0[1] * rhs, self.0[2] * rhs])
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<f32> for Mat3x3 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn div(self, rhs: f32) -> Self {
|
||||
Self([self.0[0] / rhs, self.0[1] / rhs, self.0[2] / rhs])
|
||||
}
|
||||
}
|
|
@ -1,270 +1,244 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use std::{
|
||||
cmp::PartialEq,
|
||||
ops::{Add, Div, Mul, Neg, Sub},
|
||||
};
|
||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
||||
|
||||
use glam::Vec3A;
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
use super::{CrossProduct, DotProduct, Transform, Vector};
|
||||
use crate::Vector;
|
||||
|
||||
/// A surface normal in 3d homogeneous space.
|
||||
/// A surface normal in 3D space.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Normal {
|
||||
pub co: Vec3A,
|
||||
}
|
||||
#[repr(transparent)]
|
||||
pub struct Normal(pub(crate) f32x4);
|
||||
|
||||
impl Normal {
|
||||
#[inline(always)]
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Normal {
|
||||
Normal {
|
||||
co: Vec3A::new(x, y, z),
|
||||
}
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Self {
|
||||
Self(f32x4::new(x, y, z, 0.0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn length(&self) -> f32 {
|
||||
self.co.length()
|
||||
pub fn length(self) -> f32 {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn length2(&self) -> f32 {
|
||||
self.co.length_squared()
|
||||
pub fn length2(self) -> f32 {
|
||||
let sqr = self.0 * self.0;
|
||||
sqr.a() + sqr.b() + sqr.c()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn normalized(&self) -> Normal {
|
||||
Normal {
|
||||
co: self.co.normalize(),
|
||||
}
|
||||
#[must_use]
|
||||
pub fn normalized(self) -> Self {
|
||||
Self(self.0 / self.length())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn into_vector(self) -> Vector {
|
||||
Vector { co: self.co }
|
||||
Vector(self.0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn get_n(&self, n: usize) -> f32 {
|
||||
match n {
|
||||
0 => self.x(),
|
||||
1 => self.y(),
|
||||
2 => self.z(),
|
||||
_ => panic!("Attempt to access dimension beyond z."),
|
||||
}
|
||||
pub fn x(self) -> f32 {
|
||||
self.0.a()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn x(&self) -> f32 {
|
||||
self.co[0]
|
||||
pub fn y(self) -> f32 {
|
||||
self.0.b()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn y(&self) -> f32 {
|
||||
self.co[1]
|
||||
pub fn z(self) -> f32 {
|
||||
self.0.c()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn z(&self) -> f32 {
|
||||
self.co[2]
|
||||
#[must_use]
|
||||
pub fn set_x(self, x: f32) -> Self {
|
||||
Self(self.0.set_a(x))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_x(&mut self, x: f32) {
|
||||
self.co[0] = x;
|
||||
#[must_use]
|
||||
pub fn set_y(self, y: f32) -> Self {
|
||||
Self(self.0.set_b(y))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_y(&mut self, y: f32) {
|
||||
self.co[1] = y;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_z(&mut self, z: f32) {
|
||||
self.co[2] = z;
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Normal {
|
||||
#[inline(always)]
|
||||
fn eq(&self, other: &Normal) -> bool {
|
||||
self.co == other.co
|
||||
#[must_use]
|
||||
pub fn set_z(self, z: f32) -> Self {
|
||||
Self(self.0.set_c(z))
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Normal {
|
||||
type Output = Normal;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, other: Normal) -> Normal {
|
||||
Normal {
|
||||
co: self.co + other.co,
|
||||
}
|
||||
fn add(self, other: Self) -> Self {
|
||||
Self(self.0 + other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Normal {
|
||||
type Output = Normal;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, other: Normal) -> Normal {
|
||||
Normal {
|
||||
co: self.co - other.co,
|
||||
}
|
||||
fn sub(self, other: Self) -> Self {
|
||||
Self(self.0 - other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<f32> for Normal {
|
||||
type Output = Normal;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul(self, other: f32) -> Normal {
|
||||
Normal {
|
||||
co: self.co * other,
|
||||
}
|
||||
fn mul(self, other: f32) -> Self {
|
||||
Self(self.0 * other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Transform> for Normal {
|
||||
type Output = Normal;
|
||||
// impl Mul<Transform> for Normal {
|
||||
// type Output = Normal;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Transform) -> Normal {
|
||||
Normal {
|
||||
co: other.0.matrix3.inverse().transpose().mul_vec3a(self.co),
|
||||
}
|
||||
}
|
||||
}
|
||||
// #[inline]
|
||||
// fn mul(self, other: Transform) -> Normal {
|
||||
// Normal {
|
||||
// co: other.0.matrix3.inverse().transpose().mul_vec3a(self.co),
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
impl Div<f32> for Normal {
|
||||
type Output = Normal;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn div(self, other: f32) -> Normal {
|
||||
Normal {
|
||||
co: self.co / other,
|
||||
}
|
||||
fn div(self, other: f32) -> Self {
|
||||
Self(self.0 / other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Normal {
|
||||
type Output = Normal;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn neg(self) -> Normal {
|
||||
Normal { co: self.co * -1.0 }
|
||||
fn neg(self) -> Self {
|
||||
Self(-self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl DotProduct for Normal {
|
||||
#[inline(always)]
|
||||
fn dot(self, other: Normal) -> f32 {
|
||||
self.co.dot(other.co)
|
||||
}
|
||||
}
|
||||
// impl DotProduct for Normal {
|
||||
// #[inline(always)]
|
||||
// fn dot(self, other: Normal) -> f32 {
|
||||
// self.co.dot(other.co)
|
||||
// }
|
||||
// }
|
||||
|
||||
impl CrossProduct for Normal {
|
||||
#[inline]
|
||||
fn cross(self, other: Normal) -> Normal {
|
||||
Normal {
|
||||
co: self.co.cross(other.co),
|
||||
}
|
||||
}
|
||||
}
|
||||
// impl CrossProduct for Normal {
|
||||
// #[inline]
|
||||
// fn cross(self, other: Normal) -> Normal {
|
||||
// Normal {
|
||||
// co: self.co.cross(other.co),
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::super::{CrossProduct, DotProduct, Transform};
|
||||
use super::*;
|
||||
use approx::assert_ulps_eq;
|
||||
//-------------------------------------------------------------
|
||||
|
||||
#[test]
|
||||
fn add() {
|
||||
let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
let v3 = Normal::new(2.5, 6.5, 5.5);
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
// use super::super::{CrossProduct, DotProduct, Transform};
|
||||
// use super::*;
|
||||
// use approx::assert_ulps_eq;
|
||||
|
||||
assert_eq!(v3, v1 + v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn add() {
|
||||
// let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
// let v3 = Normal::new(2.5, 6.5, 5.5);
|
||||
|
||||
#[test]
|
||||
fn sub() {
|
||||
let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
let v3 = Normal::new(-0.5, -2.5, 0.5);
|
||||
// assert_eq!(v3, v1 + v2);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 - v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn sub() {
|
||||
// let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
// let v3 = Normal::new(-0.5, -2.5, 0.5);
|
||||
|
||||
#[test]
|
||||
fn mul_scalar() {
|
||||
let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let v2 = 2.0;
|
||||
let v3 = Normal::new(2.0, 4.0, 6.0);
|
||||
// assert_eq!(v3, v1 - v2);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 * v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn mul_scalar() {
|
||||
// let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let v2 = 2.0;
|
||||
// let v3 = Normal::new(2.0, 4.0, 6.0);
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_1() {
|
||||
let n = Normal::new(1.0, 2.5, 4.0);
|
||||
let m = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
let nm = n * m;
|
||||
let nm2 = Normal::new(-4.0625, 1.78125, -0.03125);
|
||||
for i in 0..3 {
|
||||
assert_ulps_eq!(nm.co[i], nm2.co[i], max_ulps = 4);
|
||||
}
|
||||
}
|
||||
// assert_eq!(v3, v1 * v2);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn div() {
|
||||
let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let v2 = 2.0;
|
||||
let v3 = Normal::new(0.5, 1.0, 1.5);
|
||||
// #[test]
|
||||
// fn mul_matrix_1() {
|
||||
// let n = Normal::new(1.0, 2.5, 4.0);
|
||||
// let m = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// let nm = n * m;
|
||||
// let nm2 = Normal::new(-4.0625, 1.78125, -0.03125);
|
||||
// for i in 0..3 {
|
||||
// assert_ulps_eq!(nm.co[i], nm2.co[i], max_ulps = 4);
|
||||
// }
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 / v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn div() {
|
||||
// let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let v2 = 2.0;
|
||||
// let v3 = Normal::new(0.5, 1.0, 1.5);
|
||||
|
||||
#[test]
|
||||
fn length() {
|
||||
let n = Normal::new(1.0, 2.0, 3.0);
|
||||
assert!((n.length() - 3.7416573867739413).abs() < 0.000001);
|
||||
}
|
||||
// assert_eq!(v3, v1 / v2);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn length2() {
|
||||
let n = Normal::new(1.0, 2.0, 3.0);
|
||||
assert_eq!(n.length2(), 14.0);
|
||||
}
|
||||
// #[test]
|
||||
// fn length() {
|
||||
// let n = Normal::new(1.0, 2.0, 3.0);
|
||||
// assert!((n.length() - 3.7416573867739413).abs() < 0.000001);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn normalized() {
|
||||
let n1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let n2 = Normal::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732);
|
||||
let n3 = n1.normalized();
|
||||
assert!((n3.x() - n2.x()).abs() < 0.000001);
|
||||
assert!((n3.y() - n2.y()).abs() < 0.000001);
|
||||
assert!((n3.z() - n2.z()).abs() < 0.000001);
|
||||
}
|
||||
// #[test]
|
||||
// fn length2() {
|
||||
// let n = Normal::new(1.0, 2.0, 3.0);
|
||||
// assert_eq!(n.length2(), 14.0);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn dot_test() {
|
||||
let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
let v3 = 18.0f32;
|
||||
// #[test]
|
||||
// fn normalized() {
|
||||
// let n1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let n2 = Normal::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732);
|
||||
// let n3 = n1.normalized();
|
||||
// assert!((n3.x() - n2.x()).abs() < 0.000001);
|
||||
// assert!((n3.y() - n2.y()).abs() < 0.000001);
|
||||
// assert!((n3.z() - n2.z()).abs() < 0.000001);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1.dot(v2));
|
||||
}
|
||||
// #[test]
|
||||
// fn dot_test() {
|
||||
// let v1 = Normal::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Normal::new(1.5, 4.5, 2.5);
|
||||
// let v3 = 18.0f32;
|
||||
|
||||
#[test]
|
||||
fn cross_test() {
|
||||
let v1 = Normal::new(1.0, 0.0, 0.0);
|
||||
let v2 = Normal::new(0.0, 1.0, 0.0);
|
||||
let v3 = Normal::new(0.0, 0.0, 1.0);
|
||||
// assert_eq!(v3, v1.dot(v2));
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1.cross(v2));
|
||||
}
|
||||
}
|
||||
// #[test]
|
||||
// fn cross_test() {
|
||||
// let v1 = Normal::new(1.0, 0.0, 0.0);
|
||||
// let v2 = Normal::new(0.0, 1.0, 0.0);
|
||||
// let v3 = Normal::new(0.0, 0.0, 1.0);
|
||||
|
||||
// assert_eq!(v3, v1.cross(v2));
|
||||
// }
|
||||
// }
|
||||
|
|
|
@ -1,109 +1,75 @@
|
|||
#![allow(dead_code)]
|
||||
use std::ops::{Add, Sub};
|
||||
|
||||
use std::{
|
||||
cmp::PartialEq,
|
||||
ops::{Add, Mul, Sub},
|
||||
};
|
||||
use crate::vector::Vector;
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
use glam::Vec3A;
|
||||
|
||||
use super::{Transform, Vector};
|
||||
|
||||
/// A position in 3d homogeneous space.
|
||||
/// A position in 3D space.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Point {
|
||||
pub co: Vec3A,
|
||||
}
|
||||
#[repr(transparent)]
|
||||
pub struct Point(pub(crate) f32x4);
|
||||
|
||||
impl Point {
|
||||
#[inline(always)]
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Point {
|
||||
Point {
|
||||
co: Vec3A::new(x, y, z),
|
||||
}
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Self {
|
||||
Self(f32x4::new(x, y, z, 0.0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn min(&self, other: Point) -> Point {
|
||||
let n1 = self;
|
||||
let n2 = other;
|
||||
|
||||
Point {
|
||||
co: n1.co.min(n2.co),
|
||||
}
|
||||
pub fn min(self, other: Self) -> Self {
|
||||
Self(self.0.min(other.0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn max(&self, other: Point) -> Point {
|
||||
let n1 = self;
|
||||
let n2 = other;
|
||||
|
||||
Point {
|
||||
co: n1.co.max(n2.co),
|
||||
}
|
||||
pub fn max(self, other: Self) -> Self {
|
||||
Self(self.0.max(other.0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn into_vector(self) -> Vector {
|
||||
Vector { co: self.co }
|
||||
Vector(self.0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn get_n(&self, n: usize) -> f32 {
|
||||
match n {
|
||||
0 => self.x(),
|
||||
1 => self.y(),
|
||||
2 => self.z(),
|
||||
_ => panic!("Attempt to access dimension beyond z."),
|
||||
}
|
||||
pub fn x(self) -> f32 {
|
||||
self.0.a()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn x(&self) -> f32 {
|
||||
self.co[0]
|
||||
pub fn y(self) -> f32 {
|
||||
self.0.b()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn y(&self) -> f32 {
|
||||
self.co[1]
|
||||
pub fn z(self) -> f32 {
|
||||
self.0.c()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn z(&self) -> f32 {
|
||||
self.co[2]
|
||||
#[must_use]
|
||||
pub fn set_x(self, x: f32) -> Self {
|
||||
Self(self.0.set_a(x))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_x(&mut self, x: f32) {
|
||||
self.co[0] = x;
|
||||
#[must_use]
|
||||
pub fn set_y(self, y: f32) -> Self {
|
||||
Self(self.0.set_b(y))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_y(&mut self, y: f32) {
|
||||
self.co[1] = y;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_z(&mut self, z: f32) {
|
||||
self.co[2] = z;
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Point {
|
||||
#[inline(always)]
|
||||
fn eq(&self, other: &Point) -> bool {
|
||||
self.co == other.co
|
||||
#[must_use]
|
||||
pub fn set_z(self, z: f32) -> Self {
|
||||
Self(self.0.set_c(z))
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<Vector> for Point {
|
||||
type Output = Point;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, other: Vector) -> Point {
|
||||
Point {
|
||||
co: self.co + other.co,
|
||||
}
|
||||
fn add(self, other: Vector) -> Self {
|
||||
Self(self.0 + other.0)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -111,92 +77,90 @@ impl Sub for Point {
|
|||
type Output = Vector;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, other: Point) -> Vector {
|
||||
Vector {
|
||||
co: self.co - other.co,
|
||||
}
|
||||
fn sub(self, other: Self) -> Vector {
|
||||
Vector(self.0 - other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<Vector> for Point {
|
||||
type Output = Point;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, other: Vector) -> Point {
|
||||
Point {
|
||||
co: self.co - other.co,
|
||||
}
|
||||
fn sub(self, other: Vector) -> Self {
|
||||
Self(self.0 - other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Transform> for Point {
|
||||
type Output = Point;
|
||||
// impl Mul<Transform> for Point {
|
||||
// type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Transform) -> Point {
|
||||
Point {
|
||||
co: other.0.transform_point3a(self.co),
|
||||
}
|
||||
}
|
||||
}
|
||||
// #[inline]
|
||||
// fn mul(self, other: Transform) -> Self {
|
||||
// Self {
|
||||
// co: other.0.transform_point3a(self.0),
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::super::{Transform, Vector};
|
||||
use super::*;
|
||||
//-------------------------------------------------------------
|
||||
|
||||
#[test]
|
||||
fn add() {
|
||||
let p1 = Point::new(1.0, 2.0, 3.0);
|
||||
let v1 = Vector::new(1.5, 4.5, 2.5);
|
||||
let p2 = Point::new(2.5, 6.5, 5.5);
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
// use super::super::{Transform, Vector};
|
||||
// use super::*;
|
||||
|
||||
assert_eq!(p2, p1 + v1);
|
||||
}
|
||||
// #[test]
|
||||
// fn add() {
|
||||
// let p1 = Point::new(1.0, 2.0, 3.0);
|
||||
// let v1 = Vector::new(1.5, 4.5, 2.5);
|
||||
// let p2 = Point::new(2.5, 6.5, 5.5);
|
||||
|
||||
#[test]
|
||||
fn sub() {
|
||||
let p1 = Point::new(1.0, 2.0, 3.0);
|
||||
let p2 = Point::new(1.5, 4.5, 2.5);
|
||||
let v1 = Vector::new(-0.5, -2.5, 0.5);
|
||||
// assert_eq!(p2, p1 + v1);
|
||||
// }
|
||||
|
||||
assert_eq!(v1, p1 - p2);
|
||||
}
|
||||
// #[test]
|
||||
// fn sub() {
|
||||
// let p1 = Point::new(1.0, 2.0, 3.0);
|
||||
// let p2 = Point::new(1.5, 4.5, 2.5);
|
||||
// let v1 = Vector::new(-0.5, -2.5, 0.5);
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_1() {
|
||||
let p = Point::new(1.0, 2.5, 4.0);
|
||||
let m = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
let pm = Point::new(15.5, 54.0, 70.0);
|
||||
assert_eq!(p * m, pm);
|
||||
}
|
||||
// assert_eq!(v1, p1 - p2);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_2() {
|
||||
let p = Point::new(1.0, 2.5, 4.0);
|
||||
let m = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
let pm = Point::new(15.5, 54.0, 70.0);
|
||||
assert_eq!(p * m, pm);
|
||||
}
|
||||
// #[test]
|
||||
// fn mul_matrix_1() {
|
||||
// let p = Point::new(1.0, 2.5, 4.0);
|
||||
// let m = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// let pm = Point::new(15.5, 54.0, 70.0);
|
||||
// assert_eq!(p * m, pm);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_3() {
|
||||
// Make sure matrix multiplication composes the way one would expect
|
||||
let p = Point::new(1.0, 2.5, 4.0);
|
||||
let m1 = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
let m2 =
|
||||
Transform::new_from_values(4.0, 1.0, 2.0, 3.5, 3.0, 6.0, 5.0, 2.0, 2.0, 2.0, 4.0, 12.0);
|
||||
println!("{:?}", m1 * m2);
|
||||
// #[test]
|
||||
// fn mul_matrix_2() {
|
||||
// let p = Point::new(1.0, 2.5, 4.0);
|
||||
// let m = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// let pm = Point::new(15.5, 54.0, 70.0);
|
||||
// assert_eq!(p * m, pm);
|
||||
// }
|
||||
|
||||
let pmm1 = p * (m1 * m2);
|
||||
let pmm2 = (p * m1) * m2;
|
||||
// #[test]
|
||||
// fn mul_matrix_3() {
|
||||
// // Make sure matrix multiplication composes the way one would expect
|
||||
// let p = Point::new(1.0, 2.5, 4.0);
|
||||
// let m1 = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// let m2 =
|
||||
// Transform::new_from_values(4.0, 1.0, 2.0, 3.5, 3.0, 6.0, 5.0, 2.0, 2.0, 2.0, 4.0, 12.0);
|
||||
// println!("{:?}", m1 * m2);
|
||||
|
||||
assert!((pmm1 - pmm2).length2() <= 0.00001); // Assert pmm1 and pmm2 are roughly equal
|
||||
}
|
||||
}
|
||||
// let pmm1 = p * (m1 * m2);
|
||||
// let pmm2 = (p * m1) * m2;
|
||||
|
||||
// assert!((pmm1 - pmm2).length2() <= 0.00001); // Assert pmm1 and pmm2 are roughly equal
|
||||
// }
|
||||
// }
|
||||
|
|
|
@ -3,30 +3,34 @@
|
|||
use std::ops::{Add, Mul};
|
||||
|
||||
use approx::relative_eq;
|
||||
use glam::{Affine3A, Mat3, Mat4, Vec3};
|
||||
|
||||
use super::Point;
|
||||
use crate::mat3x3::Mat3x3;
|
||||
use crate::point::Point;
|
||||
use crate::transform_dual::TransformDual;
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
/// A 4x3 affine transform matrix, used for transforms.
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
pub struct Transform(pub Affine3A);
|
||||
/// An affine transform.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[repr(C)]
|
||||
pub struct Transform {
|
||||
pub(crate) m: Mat3x3, // Scale, rotation, and shear.
|
||||
pub(crate) t: f32x4, // Translation.
|
||||
}
|
||||
|
||||
impl Transform {
|
||||
/// Creates a new identity matrix
|
||||
#[inline]
|
||||
pub fn new() -> Transform {
|
||||
Transform(Affine3A::IDENTITY)
|
||||
}
|
||||
|
||||
/// Creates a new matrix with the specified values:
|
||||
/// a b c d
|
||||
/// e f g h
|
||||
/// i j k l
|
||||
/// m n o p
|
||||
/// Creates a new affine transform the specified values:
|
||||
///
|
||||
/// ```
|
||||
/// a d g j
|
||||
/// b e h k
|
||||
/// c f i l
|
||||
/// ```
|
||||
///
|
||||
/// Where j, k, and l are the xyz translation component.
|
||||
#[inline]
|
||||
#[allow(clippy::many_single_char_names)]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new_from_values(
|
||||
pub fn new(
|
||||
a: f32,
|
||||
b: f32,
|
||||
c: f32,
|
||||
|
@ -39,16 +43,32 @@ impl Transform {
|
|||
j: f32,
|
||||
k: f32,
|
||||
l: f32,
|
||||
) -> Transform {
|
||||
Transform(Affine3A::from_mat3_translation(
|
||||
Mat3::from_cols(Vec3::new(a, e, i), Vec3::new(b, f, j), Vec3::new(c, g, k)),
|
||||
Vec3::new(d, h, l),
|
||||
))
|
||||
) -> Self {
|
||||
Self {
|
||||
m: Mat3x3::new(
|
||||
f32x4::new(a, b, c, 0.0),
|
||||
f32x4::new(d, e, f, 0.0),
|
||||
f32x4::new(g, h, i, 0.0),
|
||||
),
|
||||
t: f32x4::new(j, k, l, 0.0),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new identity transform.
|
||||
#[inline]
|
||||
pub fn identity() -> Self {
|
||||
Self {
|
||||
m: Mat3x3::identity(),
|
||||
t: f32x4::splat(0.0),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn from_location(loc: Point) -> Transform {
|
||||
Transform(Affine3A::from_translation(loc.co.into()))
|
||||
Self {
|
||||
m: Mat3x3::identity(),
|
||||
t: loc.0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns whether the matrices are approximately equal to each other.
|
||||
|
@ -57,51 +77,57 @@ impl Transform {
|
|||
#[inline]
|
||||
pub fn aprx_eq(&self, other: Transform, epsilon: f32) -> bool {
|
||||
let mut eq = true;
|
||||
for c in 0..3 {
|
||||
for r in 0..3 {
|
||||
let a = self.0.matrix3.col(c)[r];
|
||||
let b = other.0.matrix3.col(c)[r];
|
||||
eq &= relative_eq!(a, b, epsilon = epsilon);
|
||||
}
|
||||
}
|
||||
for i in 0..3 {
|
||||
let a = self.0.translation[i];
|
||||
let b = other.0.translation[i];
|
||||
eq &= relative_eq!(a, b, epsilon = epsilon);
|
||||
for (t1, t2) in self
|
||||
.m
|
||||
.0
|
||||
.iter()
|
||||
.chain(&[self.t])
|
||||
.zip(other.m.0.iter().chain(&[other.t]))
|
||||
{
|
||||
eq &= relative_eq!(t1.a(), t2.a(), epsilon = epsilon);
|
||||
eq &= relative_eq!(t1.b(), t2.b(), epsilon = epsilon);
|
||||
eq &= relative_eq!(t1.c(), t2.c(), epsilon = epsilon);
|
||||
}
|
||||
eq
|
||||
}
|
||||
|
||||
/// Returns the inverse of the Matrix
|
||||
#[inline]
|
||||
pub fn inverse(&self) -> Transform {
|
||||
Transform(self.0.inverse())
|
||||
pub fn compute_dual(self) -> TransformDual {
|
||||
TransformDual {
|
||||
m: self.m,
|
||||
m_inv: self.m.inverse(),
|
||||
t: self.t,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Transform {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
Self::identity()
|
||||
}
|
||||
}
|
||||
|
||||
/// Multiply two matrices together
|
||||
impl Mul for Transform {
|
||||
type Output = Self;
|
||||
// /// Multiply two matrices together
|
||||
// impl Mul for Transform {
|
||||
// type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Self) -> Self {
|
||||
Self(other.0 * self.0)
|
||||
}
|
||||
}
|
||||
// #[inline]
|
||||
// fn mul(self, rhs: Self) -> Self {
|
||||
// Self(rhs.0 * self.0)
|
||||
// }
|
||||
// }
|
||||
|
||||
/// Multiply a matrix by a f32
|
||||
impl Mul<f32> for Transform {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: f32) -> Self {
|
||||
Self(Affine3A::from_mat4(Mat4::from(self.0) * other))
|
||||
fn mul(self, rhs: f32) -> Self {
|
||||
Self {
|
||||
m: self.m * rhs,
|
||||
t: self.t * rhs,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -110,69 +136,72 @@ impl Add for Transform {
|
|||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: Self) -> Self {
|
||||
Self(Affine3A::from_mat4(
|
||||
Mat4::from(self.0) + Mat4::from(other.0),
|
||||
))
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
m: self.m + rhs.m,
|
||||
t: self.t + rhs.t,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
//-------------------------------------------------------------
|
||||
|
||||
#[test]
|
||||
fn equality_test() {
|
||||
let a = Transform::new();
|
||||
let b = Transform::new();
|
||||
let c =
|
||||
Transform::new_from_values(1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0);
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
// use super::*;
|
||||
|
||||
assert_eq!(a, b);
|
||||
assert!(a != c);
|
||||
}
|
||||
// #[test]
|
||||
// fn equality_test() {
|
||||
// let a = Transform::new();
|
||||
// let b = Transform::new();
|
||||
// let c =
|
||||
// Transform::new_from_values(1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0);
|
||||
|
||||
#[test]
|
||||
fn approximate_equality_test() {
|
||||
let a = Transform::new();
|
||||
let b = Transform::new_from_values(
|
||||
1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0,
|
||||
);
|
||||
let c = Transform::new_from_values(
|
||||
1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0,
|
||||
);
|
||||
let d = Transform::new_from_values(
|
||||
-1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0,
|
||||
);
|
||||
// assert_eq!(a, b);
|
||||
// assert!(a != c);
|
||||
// }
|
||||
|
||||
assert!(a.aprx_eq(b, 0.000001));
|
||||
assert!(!a.aprx_eq(c, 0.000001));
|
||||
assert!(!a.aprx_eq(d, 0.000001));
|
||||
}
|
||||
// #[test]
|
||||
// fn approximate_equality_test() {
|
||||
// let a = Transform::new();
|
||||
// let b = Transform::new_from_values(
|
||||
// 1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0,
|
||||
// );
|
||||
// let c = Transform::new_from_values(
|
||||
// 1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0,
|
||||
// );
|
||||
// let d = Transform::new_from_values(
|
||||
// -1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0,
|
||||
// );
|
||||
|
||||
#[test]
|
||||
fn multiply_test() {
|
||||
let a = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
let b = Transform::new_from_values(
|
||||
1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0,
|
||||
);
|
||||
let c = Transform::new_from_values(
|
||||
97.0, 50.0, 136.0, 162.5, 110.0, 60.0, 156.0, 185.0, 123.0, 70.0, 176.0, 207.5,
|
||||
);
|
||||
// assert!(a.aprx_eq(b, 0.000001));
|
||||
// assert!(!a.aprx_eq(c, 0.000001));
|
||||
// assert!(!a.aprx_eq(d, 0.000001));
|
||||
// }
|
||||
|
||||
assert_eq!(a * b, c);
|
||||
}
|
||||
// #[test]
|
||||
// fn multiply_test() {
|
||||
// let a = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// let b = Transform::new_from_values(
|
||||
// 1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0,
|
||||
// );
|
||||
// let c = Transform::new_from_values(
|
||||
// 97.0, 50.0, 136.0, 162.5, 110.0, 60.0, 156.0, 185.0, 123.0, 70.0, 176.0, 207.5,
|
||||
// );
|
||||
|
||||
#[test]
|
||||
fn inverse_test() {
|
||||
let a = Transform::new_from_values(
|
||||
1.0, 0.33, 0.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.1, 0.7, 1.3, 0.0,
|
||||
);
|
||||
let b = a.inverse();
|
||||
let c = Transform::new();
|
||||
// assert_eq!(a * b, c);
|
||||
// }
|
||||
|
||||
assert!((dbg!(a * b)).aprx_eq(dbg!(c), 0.0000001));
|
||||
}
|
||||
}
|
||||
// #[test]
|
||||
// fn inverse_test() {
|
||||
// let a = Transform::new_from_values(
|
||||
// 1.0, 0.33, 0.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.1, 0.7, 1.3, 0.0,
|
||||
// );
|
||||
// let b = a.inverse();
|
||||
// let c = Transform::new();
|
||||
|
||||
// assert!((dbg!(a * b)).aprx_eq(dbg!(c), 0.0000001));
|
||||
// }
|
||||
// }
|
||||
|
|
12
sub_crates/math3d/src/transform_dual.rs
Normal file
12
sub_crates/math3d/src/transform_dual.rs
Normal file
|
@ -0,0 +1,12 @@
|
|||
use crate::mat3x3::Mat3x3;
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
/// An affine transform with precomputed data for performing reverse
|
||||
/// transforms, among other things.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[repr(C)]
|
||||
pub struct TransformDual {
|
||||
pub(crate) m: Mat3x3, // Scale, rotation, and shear.
|
||||
pub(crate) m_inv: Mat3x3, // Inverse scale, rotation, and shear.
|
||||
pub(crate) t: f32x4, // Forward translation.
|
||||
}
|
|
@ -1,286 +1,251 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use std::{
|
||||
cmp::PartialEq,
|
||||
ops::{Add, Div, Mul, Neg, Sub},
|
||||
};
|
||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
||||
|
||||
use glam::Vec3A;
|
||||
use crate::normal::Normal;
|
||||
use crate::point::Point;
|
||||
use crate::wide4::f32x4;
|
||||
|
||||
use super::{CrossProduct, DotProduct, Normal, Point, Transform};
|
||||
|
||||
/// A direction vector in 3d homogeneous space.
|
||||
/// A direction vector in 3D space.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct Vector {
|
||||
pub co: Vec3A,
|
||||
}
|
||||
#[repr(transparent)]
|
||||
pub struct Vector(pub(crate) f32x4);
|
||||
|
||||
impl Vector {
|
||||
#[inline(always)]
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Vector {
|
||||
Vector {
|
||||
co: Vec3A::new(x, y, z),
|
||||
}
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Self {
|
||||
Self(f32x4::new(x, y, z, 0.0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn length(&self) -> f32 {
|
||||
self.co.length()
|
||||
pub fn length(self) -> f32 {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn length2(&self) -> f32 {
|
||||
self.co.length_squared()
|
||||
pub fn length2(self) -> f32 {
|
||||
let sqr = self.0 * self.0;
|
||||
sqr.a() + sqr.b() + sqr.c()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn normalized(&self) -> Vector {
|
||||
Vector {
|
||||
co: self.co.normalize(),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn abs(&self) -> Vector {
|
||||
Vector {
|
||||
co: self.co * self.co.signum(),
|
||||
}
|
||||
#[must_use]
|
||||
pub fn normalized(self) -> Self {
|
||||
Self(self.0 / self.length())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn into_point(self) -> Point {
|
||||
Point { co: self.co }
|
||||
Point(self.0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn into_normal(self) -> Normal {
|
||||
Normal { co: self.co }
|
||||
Normal(self.0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn get_n(&self, n: usize) -> f32 {
|
||||
match n {
|
||||
0 => self.x(),
|
||||
1 => self.y(),
|
||||
2 => self.z(),
|
||||
_ => panic!("Attempt to access dimension beyond z."),
|
||||
}
|
||||
pub fn x(self) -> f32 {
|
||||
self.0.a()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn x(&self) -> f32 {
|
||||
self.co[0]
|
||||
pub fn y(self) -> f32 {
|
||||
self.0.b()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn y(&self) -> f32 {
|
||||
self.co[1]
|
||||
pub fn z(self) -> f32 {
|
||||
self.0.c()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn z(&self) -> f32 {
|
||||
self.co[2]
|
||||
#[must_use]
|
||||
pub fn set_x(self, x: f32) -> Self {
|
||||
Self(self.0.set_a(x))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_x(&mut self, x: f32) {
|
||||
self.co[0] = x;
|
||||
#[must_use]
|
||||
pub fn set_y(self, y: f32) -> Self {
|
||||
Self(self.0.set_b(y))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_y(&mut self, y: f32) {
|
||||
self.co[1] = y;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_z(&mut self, z: f32) {
|
||||
self.co[2] = z;
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Vector {
|
||||
#[inline(always)]
|
||||
fn eq(&self, other: &Vector) -> bool {
|
||||
self.co == other.co
|
||||
#[must_use]
|
||||
pub fn set_z(self, z: f32) -> Self {
|
||||
Self(self.0.set_c(z))
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Vector {
|
||||
type Output = Vector;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, other: Vector) -> Vector {
|
||||
Vector {
|
||||
co: self.co + other.co,
|
||||
}
|
||||
fn add(self, other: Self) -> Self {
|
||||
Self(self.0 + other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Vector {
|
||||
type Output = Vector;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, other: Vector) -> Vector {
|
||||
Vector {
|
||||
co: self.co - other.co,
|
||||
}
|
||||
fn sub(self, other: Self) -> Self {
|
||||
Self(self.0 - other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<f32> for Vector {
|
||||
type Output = Vector;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul(self, other: f32) -> Vector {
|
||||
Vector {
|
||||
co: self.co * other,
|
||||
}
|
||||
fn mul(self, other: f32) -> Self {
|
||||
Self(self.0 * other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Transform> for Vector {
|
||||
type Output = Vector;
|
||||
// impl Mul<Transform> for Vector {
|
||||
// type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Transform) -> Vector {
|
||||
Vector {
|
||||
co: other.0.transform_vector3a(self.co),
|
||||
}
|
||||
}
|
||||
}
|
||||
// #[inline]
|
||||
// fn mul(self, other: Transform) -> Self {
|
||||
// Self(other.0.transform_vector3a(self.0))
|
||||
// }
|
||||
// }
|
||||
|
||||
impl Div<f32> for Vector {
|
||||
type Output = Vector;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn div(self, other: f32) -> Vector {
|
||||
Vector {
|
||||
co: self.co / other,
|
||||
}
|
||||
fn div(self, other: f32) -> Self {
|
||||
Self(self.0 / other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Vector {
|
||||
type Output = Vector;
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn neg(self) -> Vector {
|
||||
Vector { co: self.co * -1.0 }
|
||||
fn neg(self) -> Self {
|
||||
Self(-self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl DotProduct for Vector {
|
||||
#[inline(always)]
|
||||
fn dot(self, other: Vector) -> f32 {
|
||||
self.co.dot(other.co)
|
||||
}
|
||||
}
|
||||
// impl DotProduct for Vector {
|
||||
// #[inline(always)]
|
||||
// fn dot(self, other: Self) -> f32 {
|
||||
// self.co.dot(other.co)
|
||||
// }
|
||||
// }
|
||||
|
||||
impl CrossProduct for Vector {
|
||||
#[inline]
|
||||
fn cross(self, other: Vector) -> Vector {
|
||||
Vector {
|
||||
co: self.co.cross(other.co),
|
||||
}
|
||||
}
|
||||
}
|
||||
// impl CrossProduct for Vector {
|
||||
// #[inline]
|
||||
// fn cross(self, other: Self) -> Self {
|
||||
// Self {
|
||||
// co: self.co.cross(other.co),
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::super::{CrossProduct, DotProduct, Transform};
|
||||
use super::*;
|
||||
//-------------------------------------------------------------
|
||||
|
||||
#[test]
|
||||
fn add() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
let v3 = Vector::new(2.5, 6.5, 5.5);
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
// use super::super::{CrossProduct, DotProduct, Transform};
|
||||
// use super::*;
|
||||
|
||||
assert_eq!(v3, v1 + v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn add() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
// let v3 = Vector::new(2.5, 6.5, 5.5);
|
||||
|
||||
#[test]
|
||||
fn sub() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
let v3 = Vector::new(-0.5, -2.5, 0.5);
|
||||
// assert_eq!(v3, v1 + v2);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 - v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn sub() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
// let v3 = Vector::new(-0.5, -2.5, 0.5);
|
||||
|
||||
#[test]
|
||||
fn mul_scalar() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = 2.0;
|
||||
let v3 = Vector::new(2.0, 4.0, 6.0);
|
||||
// assert_eq!(v3, v1 - v2);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 * v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn mul_scalar() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = 2.0;
|
||||
// let v3 = Vector::new(2.0, 4.0, 6.0);
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_1() {
|
||||
let v = Vector::new(1.0, 2.5, 4.0);
|
||||
let m = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
|
||||
}
|
||||
// assert_eq!(v3, v1 * v2);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn mul_matrix_2() {
|
||||
let v = Vector::new(1.0, 2.5, 4.0);
|
||||
let m = Transform::new_from_values(
|
||||
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
);
|
||||
assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
|
||||
}
|
||||
// #[test]
|
||||
// fn mul_matrix_1() {
|
||||
// let v = Vector::new(1.0, 2.5, 4.0);
|
||||
// let m = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn div() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = 2.0;
|
||||
let v3 = Vector::new(0.5, 1.0, 1.5);
|
||||
// #[test]
|
||||
// fn mul_matrix_2() {
|
||||
// let v = Vector::new(1.0, 2.5, 4.0);
|
||||
// let m = Transform::new_from_values(
|
||||
// 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
|
||||
// );
|
||||
// assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1 / v2);
|
||||
}
|
||||
// #[test]
|
||||
// fn div() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = 2.0;
|
||||
// let v3 = Vector::new(0.5, 1.0, 1.5);
|
||||
|
||||
#[test]
|
||||
fn length() {
|
||||
let v = Vector::new(1.0, 2.0, 3.0);
|
||||
assert!((v.length() - 3.7416573867739413).abs() < 0.000001);
|
||||
}
|
||||
// assert_eq!(v3, v1 / v2);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn length2() {
|
||||
let v = Vector::new(1.0, 2.0, 3.0);
|
||||
assert_eq!(v.length2(), 14.0);
|
||||
}
|
||||
// #[test]
|
||||
// fn length() {
|
||||
// let v = Vector::new(1.0, 2.0, 3.0);
|
||||
// assert!((v.length() - 3.7416573867739413).abs() < 0.000001);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn normalized() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = Vector::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732);
|
||||
let v3 = v1.normalized();
|
||||
assert!((v3.x() - v2.x()).abs() < 0.000001);
|
||||
assert!((v3.y() - v2.y()).abs() < 0.000001);
|
||||
assert!((v3.z() - v2.z()).abs() < 0.000001);
|
||||
}
|
||||
// #[test]
|
||||
// fn length2() {
|
||||
// let v = Vector::new(1.0, 2.0, 3.0);
|
||||
// assert_eq!(v.length2(), 14.0);
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn dot_test() {
|
||||
let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
let v3 = 18.0f32;
|
||||
// #[test]
|
||||
// fn normalized() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Vector::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732);
|
||||
// let v3 = v1.normalized();
|
||||
// assert!((v3.x() - v2.x()).abs() < 0.000001);
|
||||
// assert!((v3.y() - v2.y()).abs() < 0.000001);
|
||||
// assert!((v3.z() - v2.z()).abs() < 0.000001);
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1.dot(v2));
|
||||
}
|
||||
// #[test]
|
||||
// fn dot_test() {
|
||||
// let v1 = Vector::new(1.0, 2.0, 3.0);
|
||||
// let v2 = Vector::new(1.5, 4.5, 2.5);
|
||||
// let v3 = 18.0f32;
|
||||
|
||||
#[test]
|
||||
fn cross_test() {
|
||||
let v1 = Vector::new(1.0, 0.0, 0.0);
|
||||
let v2 = Vector::new(0.0, 1.0, 0.0);
|
||||
let v3 = Vector::new(0.0, 0.0, 1.0);
|
||||
// assert_eq!(v3, v1.dot(v2));
|
||||
// }
|
||||
|
||||
assert_eq!(v3, v1.cross(v2));
|
||||
}
|
||||
}
|
||||
// #[test]
|
||||
// fn cross_test() {
|
||||
// let v1 = Vector::new(1.0, 0.0, 0.0);
|
||||
// let v2 = Vector::new(0.0, 1.0, 0.0);
|
||||
// let v3 = Vector::new(0.0, 0.0, 1.0);
|
||||
|
||||
// assert_eq!(v3, v1.cross(v2));
|
||||
// }
|
||||
// }
|
||||
|
|
317
sub_crates/math3d/src/wide4.rs
Normal file
317
sub_crates/math3d/src/wide4.rs
Normal file
|
@ -0,0 +1,317 @@
|
|||
use std::ops::{AddAssign, DivAssign, MulAssign, SubAssign};
|
||||
|
||||
pub use fallback::f32x4;
|
||||
mod fallback {
|
||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
||||
|
||||
#[allow(non_camel_case_types)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[repr(C, align(16))]
|
||||
pub struct f32x4 {
|
||||
n: [f32; 4],
|
||||
}
|
||||
|
||||
impl f32x4 {
|
||||
/// Create a new `f32x4` with the given components.
|
||||
#[inline(always)]
|
||||
pub fn new(a: f32, b: f32, c: f32, d: f32) -> Self {
|
||||
Self { n: [a, b, c, d] }
|
||||
}
|
||||
|
||||
/// Create a new `f32x4` with all elements set to `n`.
|
||||
#[inline(always)]
|
||||
pub fn splat(n: f32) -> Self {
|
||||
Self { n: [n, n, n, n] }
|
||||
}
|
||||
|
||||
/// Component-wise fused multiply-add.
|
||||
///
|
||||
/// `(self * a) + b` with only one rounding error.
|
||||
#[inline(always)]
|
||||
pub fn mul_add(self, a: Self, b: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0].mul_add(a.n[0], b.n[0]),
|
||||
self.n[1].mul_add(a.n[1], b.n[1]),
|
||||
self.n[2].mul_add(a.n[2], b.n[2]),
|
||||
self.n[3].mul_add(a.n[3], b.n[3]),
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
/// Vertical minimum.
|
||||
#[inline(always)]
|
||||
pub fn min(self, a: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0].min(a.n[0]),
|
||||
self.n[1].min(a.n[1]),
|
||||
self.n[2].min(a.n[2]),
|
||||
self.n[3].min(a.n[3]),
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
/// Vertical maximum.
|
||||
#[inline(always)]
|
||||
pub fn max(self, a: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0].max(a.n[0]),
|
||||
self.n[1].max(a.n[1]),
|
||||
self.n[2].max(a.n[2]),
|
||||
self.n[3].max(a.n[3]),
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
// /// Horizontal minimum.
|
||||
// #[inline(always)]
|
||||
// pub fn hmin(self) -> f32 {
|
||||
// let a = self.n[0].min(self.n[1]);
|
||||
// let b = self.n[2].min(self.n[3]);
|
||||
// a.min(b)
|
||||
// }
|
||||
|
||||
// /// Horizontal maximum.
|
||||
// #[inline(always)]
|
||||
// pub fn hmax(self) -> f32 {
|
||||
// let a = self.n[0].max(self.n[1]);
|
||||
// let b = self.n[2].max(self.n[3]);
|
||||
// a.max(b)
|
||||
// }
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Individual components.
|
||||
|
||||
#[inline(always)]
|
||||
pub fn a(self) -> f32 {
|
||||
self.n[0]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn b(self) -> f32 {
|
||||
self.n[1]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn c(self) -> f32 {
|
||||
self.n[2]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn d(self) -> f32 {
|
||||
self.n[3]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn set_a(self, n: f32) -> Self {
|
||||
Self {
|
||||
n: [n, self.n[1], self.n[2], self.n[3]],
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn set_b(self, n: f32) -> Self {
|
||||
Self {
|
||||
n: [self.n[0], n, self.n[2], self.n[3]],
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn set_c(self, n: f32) -> Self {
|
||||
Self {
|
||||
n: [self.n[0], self.n[1], n, self.n[3]],
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn set_d(self, n: f32) -> Self {
|
||||
Self {
|
||||
n: [self.n[0], self.n[1], self.n[2], n],
|
||||
}
|
||||
}
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Shuffles.
|
||||
|
||||
#[inline(always)]
|
||||
pub fn aaaa(self) -> Self {
|
||||
let a = self.n[0];
|
||||
Self { n: [a, a, a, a] }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn bbbb(self) -> Self {
|
||||
let b = self.n[1];
|
||||
Self { n: [b, b, b, b] }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn cccc(self) -> Self {
|
||||
let c = self.n[2];
|
||||
Self { n: [c, c, c, c] }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn dddd(self) -> Self {
|
||||
let d = self.n[3];
|
||||
Self { n: [d, d, d, d] }
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] + rhs.n[0],
|
||||
self.n[1] + rhs.n[1],
|
||||
self.n[2] + rhs.n[2],
|
||||
self.n[3] + rhs.n[3],
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] - rhs.n[0],
|
||||
self.n[1] - rhs.n[1],
|
||||
self.n[2] - rhs.n[2],
|
||||
self.n[3] - rhs.n[3],
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] * rhs.n[0],
|
||||
self.n[1] * rhs.n[1],
|
||||
self.n[2] * rhs.n[2],
|
||||
self.n[3] * rhs.n[3],
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<f32> for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn mul(self, rhs: f32) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] * rhs,
|
||||
self.n[1] * rhs,
|
||||
self.n[2] * rhs,
|
||||
self.n[3] * rhs,
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn div(self, rhs: Self) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] / rhs.n[0],
|
||||
self.n[1] / rhs.n[1],
|
||||
self.n[2] / rhs.n[2],
|
||||
self.n[3] / rhs.n[3],
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<f32> for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn div(self, rhs: f32) -> Self {
|
||||
Self {
|
||||
n: [
|
||||
self.n[0] / rhs,
|
||||
self.n[1] / rhs,
|
||||
self.n[2] / rhs,
|
||||
self.n[3] / rhs,
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for f32x4 {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn neg(self) -> Self {
|
||||
Self {
|
||||
n: [-self.n[0], -self.n[1], -self.n[2], -self.n[3]],
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------
|
||||
|
||||
impl AddAssign for f32x4 {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
*self = *self + rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for f32x4 {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
*self = *self - rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for f32x4 {
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, rhs: Self) {
|
||||
*self = *self * rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign<f32> for f32x4 {
|
||||
#[inline(always)]
|
||||
fn mul_assign(&mut self, rhs: f32) {
|
||||
*self = *self * rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for f32x4 {
|
||||
#[inline(always)]
|
||||
fn div_assign(&mut self, rhs: Self) {
|
||||
*self = *self / rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign<f32> for f32x4 {
|
||||
#[inline(always)]
|
||||
fn div_assign(&mut self, rhs: f32) {
|
||||
*self = *self / rhs;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user