Implement an experimental packed HDR RGB 32-bit storage format.

This commit is contained in:
Nathan Vegdahl 2020-09-10 22:36:20 +09:00
parent 99b6ddfa54
commit 7066c38189
3 changed files with 319 additions and 4 deletions

View File

@ -1,15 +1,15 @@
use bencher::{benchmark_group, benchmark_main, black_box, Bencher}; use bencher::{benchmark_group, benchmark_main, black_box, Bencher};
use rand::{rngs::SmallRng, FromEntropy, Rng}; use rand::{rngs::SmallRng, FromEntropy, Rng};
use trifloat::{signed48, unsigned32}; use trifloat::{rgb32, signed48, unsigned32};
//---- //----
fn unsigned32_encode_100_values(bench: &mut Bencher) { fn unsigned32_encode_100_values(bench: &mut Bencher) {
let mut rng = SmallRng::from_entropy(); let mut rng = SmallRng::from_entropy();
bench.iter(|| { bench.iter(|| {
let x = rng.gen::<f32>() - 0.5; let x = rng.gen::<f32>();
let y = rng.gen::<f32>() - 0.5; let y = rng.gen::<f32>();
let z = rng.gen::<f32>() - 0.5; let z = rng.gen::<f32>();
for _ in 0..100 { for _ in 0..100 {
black_box(unsigned32::encode(black_box((x, y, z)))); black_box(unsigned32::encode(black_box((x, y, z))));
} }
@ -48,6 +48,28 @@ fn signed48_decode_100_values(bench: &mut Bencher) {
}); });
} }
fn rgb32_encode_100_values(bench: &mut Bencher) {
let mut rng = SmallRng::from_entropy();
bench.iter(|| {
let y = rng.gen::<f32>();
let x = rng.gen::<f32>();
let z = rng.gen::<f32>();
for _ in 0..100 {
black_box(rgb32::encode(black_box((x, y, z))));
}
});
}
fn rgb32_decode_100_values(bench: &mut Bencher) {
let mut rng = SmallRng::from_entropy();
bench.iter(|| {
let v = rng.gen::<u32>();
for _ in 0..100 {
black_box(rgb32::decode(black_box(v)));
}
});
}
//---- //----
benchmark_group!( benchmark_group!(
@ -56,5 +78,7 @@ benchmark_group!(
unsigned32_decode_100_values, unsigned32_decode_100_values,
signed48_encode_100_values, signed48_encode_100_values,
signed48_decode_100_values, signed48_decode_100_values,
rgb32_encode_100_values,
rgb32_decode_100_values,
); );
benchmark_main!(benches); benchmark_main!(benches);

View File

@ -4,6 +4,7 @@
//! The motivating use-case for this is compactly storing HDR RGB colors. But //! The motivating use-case for this is compactly storing HDR RGB colors. But
//! it may be useful for other things as well. //! it may be useful for other things as well.
pub mod rgb32;
pub mod signed48; pub mod signed48;
pub mod unsigned32; pub mod unsigned32;

View File

@ -0,0 +1,290 @@
//! Encoding/decoding for specialized HDR RGB 32-bit storage format.
//!
//! The motivation for this format is to separate out the luma of
//! the color from its chromaticity, in the same spirit as most
//! image and video compression approaches, and then allocate more
//! data to the luma component since that's what the human eye is
//! most sensitive to.
//!
//! This encoding first transforms into YCoCg colorspace, and then
//! fiddles the resulting Y, Co, and Cg components into a special
//! 32-bit format. The Y component is stored as an unsigned float,
//! with 6 bits of exponent and 10 bits of mantissa. The Co and Cg
//! components are stored as 8-bit integers.
//!
//! The layout is:
//!
//! 1. Y-exponent: 6 bits
//! 2. Y-mantissa: 10 bits
//! 3. Co: 8 bits
//! 4. Cg: 8 bits
//!
//! The Y component follows the convention of a mantissa with an
//! implicit leading one, giving it 11 bits of precision. The
//! exponent has a bias of 24.
/// Encodes three floating point RGB values into a packed 32-bit format.
///
/// Warning: negative values and NaN's are _not_ supported. There are
/// debug-only assertions in place to catch such values in the input
/// floats.
#[inline]
pub fn encode(floats: (f32, f32, f32)) -> u32 {
debug_assert!(
floats.0 >= 0.0
&& floats.1 >= 0.0
&& floats.2 >= 0.0
&& !floats.0.is_nan()
&& !floats.1.is_nan()
&& !floats.2.is_nan(),
"trifloat::rgb32::encode(): encoding to unsigned tri-floats only \
works correctly for positive, non-NaN numbers, but the numbers passed \
were: ({}, {}, {})",
floats.0,
floats.1,
floats.2
);
// Convert to YCoCg colorspace.
let y = (floats.0 * 0.25) + (floats.1 * 0.5) + (floats.2 * 0.25);
let co = (floats.0 * 0.5) + (floats.2 * -0.5);
let cg = (floats.0 * -0.25) + (floats.1 * 0.5) + (floats.2 * -0.25);
if y <= 0.0 {
// Corner case: black.
return 0;
} else if y.is_infinite() {
// Corner case: infinite white.
return 0xffff7f7f;
}
// Encode Co and Cg as 8-bit integers.
// Note that the max values for each of these will get clamped
// very slightly, but that represents extremely saturated
// colors, where the human eye is not very sensitive to chroma
// differences anyway. And the trade-off is that we can
// represent 0.0 (completely unsaturated, no chroma) exactly.
let inv_y = 1.0 / y;
let co_8bit = ((co * inv_y * 63.5) + 127.5).min(255.0).max(0.0) as u8;
let cg_8bit = ((cg * inv_y * 127.0) + 127.5).min(255.0).max(0.0) as u8;
// Bit-fiddle to get the float components of Y.
// This assumes we're working with a standard 32-bit IEEE float.
let y_ieee_bits = y.to_bits();
let y_mantissa = (y_ieee_bits >> 13) & 0b11_1111_1111;
let y_exp = ((y_ieee_bits >> 23) & 0b1111_1111) as i32 - 127;
// Pack values into a u32 and return.
if y_exp <= -24 {
// Corner-case:
// Luma is so dark that it will be zero at our precision,
// and hence black.
0
} else if y_exp >= 40 {
dbg!();
// Corner-case:
// Luma is so bright that it exceeds our max value, so saturate
// the luma.
0xffff0000 | ((co_8bit as u32) << 8) | cg_8bit as u32
} else {
// Common case.
let exp = (y_exp + 24) as u32;
(exp << 26) | (y_mantissa << 16) | ((co_8bit as u32) << 8) | cg_8bit as u32
}
}
/// Decodes a packed HDR RGB 32-bit format into three full
/// floating point RGB numbers.
///
/// This operation is lossless and cannot fail.
#[inline]
pub fn decode(packed_rgb: u32) -> (f32, f32, f32) {
// Reconstruct Y, Co, and Cg from the packed bits.
let y = {
let exp = (packed_rgb & 0xfc00_0000) >> 26;
if exp == 0 {
0.0
} else {
f32::from_bits(((exp + 103) << 23) | ((packed_rgb & 0x03ff_0000) >> 3))
}
};
let co = {
let co_8bit = (packed_rgb >> 8) & 0xff;
((co_8bit as f32) - 127.0) * (1.0 / 63.5) * y
};
let cg = {
let cg_8bit = packed_rgb & 0xff;
((cg_8bit as f32) - 127.0) * (1.0 / 127.0) * y
};
// Convert back to RGB.
let tmp = y - cg;
let r = (tmp + co).max(0.0);
let g = (y + cg).max(0.0);
let b = (tmp - co).max(0.0);
(r, g, b)
}
#[cfg(test)]
mod tests {
use super::*;
fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) {
decode(encode(floats))
}
#[test]
fn all_zeros() {
let fs = (0.0f32, 0.0f32, 0.0f32);
let tri = encode(fs);
let fs2 = decode(tri);
assert_eq!(tri, 0u32);
assert_eq!(fs, fs2);
}
#[test]
fn powers_of_two() {
let mut n = 1.0f32 / 65536.0;
for _ in 0..48 {
let fs = (n, n, n);
assert_eq!(fs, round_trip(fs));
n *= 2.0;
}
}
#[test]
fn integers() {
let mut n = 1.0f32;
for _ in 0..2048 {
let fs = (n, n, n);
assert_eq!(fs, round_trip(fs));
n += 1.0;
}
}
#[test]
fn full_saturation() {
let fs1 = (1.0, 0.0, 0.0);
let fs2 = (0.0, 1.0, 0.0);
let fs3 = (0.0, 0.0, 1.0);
assert_eq!(fs1, round_trip(fs1));
assert_eq!(fs2, round_trip(fs2));
assert_eq!(fs3, round_trip(fs3));
}
#[test]
fn saturate() {
let fs = (10000000000000.0, 10000000000000.0, 10000000000000.0);
assert_eq!(
(1098974760000.0, 1098974760000.0, 1098974760000.0),
round_trip(fs)
);
}
#[test]
fn inf_saturate() {
use std::f32::INFINITY;
let fs = (INFINITY, INFINITY, INFINITY);
assert_eq!(
(1098974760000.0, 1098974760000.0, 1098974760000.0),
round_trip(fs)
);
}
#[test]
fn partial_saturate() {
let fs1 = (10000000000000.0, 0.0, 0.0);
let fs2 = (0.0, 10000000000000.0, 0.0);
let fs3 = (0.0, 0.0, 10000000000000.0);
assert_eq!(round_trip(fs1), (4395899000000.0, 0.0, 0.0));
assert_eq!(round_trip(fs2), (0.0, 2197949500000.0, 0.0));
assert_eq!(round_trip(fs3), (0.0, 0.0, 4395899000000.0));
}
// #[test]
// fn accuracy() {
// let mut n = 1.0;
// for _ in 0..256 {
// let (x, _, _) = round_trip((n, 0.0, 0.0));
// assert_eq!(n, x);
// n += 1.0 / 256.0;
// }
// }
// #[test]
// fn rounding() {
// let fs = (7.0f32, 513.0f32, 1.0f32);
// assert_eq!(round_trip(fs), (8.0, 514.0, 2.0));
// }
// #[test]
// fn rounding_edge_case() {
// let fs = (1023.0f32, 0.0f32, 0.0f32);
// assert_eq!(round_trip(fs), (1024.0, 0.0, 0.0),);
// }
// #[test]
// fn smallest_value() {
// let fs = (MIN, MIN * 0.5, MIN * 0.49);
// assert_eq!(round_trip(fs), (MIN, MIN, 0.0));
// assert_eq!(decode(0x00_80_40_00), (MIN, MIN, 0.0));
// }
// #[test]
// fn underflow() {
// let fs = (MIN * 0.49, 0.0, 0.0);
// assert_eq!(encode(fs), 0);
// assert_eq!(round_trip(fs), (0.0, 0.0, 0.0));
// }
// #[test]
// #[should_panic]
// fn nans_01() {
// encode((std::f32::NAN, 0.0, 0.0));
// }
// #[test]
// #[should_panic]
// fn nans_02() {
// encode((0.0, std::f32::NAN, 0.0));
// }
// #[test]
// #[should_panic]
// fn nans_03() {
// encode((0.0, 0.0, std::f32::NAN));
// }
// #[test]
// #[should_panic]
// fn negative_01() {
// encode((-1.0, 0.0, 0.0));
// }
// #[test]
// #[should_panic]
// fn negative_02() {
// encode((0.0, -1.0, 0.0));
// }
// #[test]
// #[should_panic]
// fn negative_03() {
// encode((0.0, 0.0, -1.0));
// }
// #[test]
// fn negative_04() {
// encode((-0.0, -0.0, -0.0));
// }
}