Implement an experimental packed HDR RGB 32-bit storage format.
This commit is contained in:
parent
99b6ddfa54
commit
7066c38189
|
@ -1,15 +1,15 @@
|
|||
use bencher::{benchmark_group, benchmark_main, black_box, Bencher};
|
||||
use rand::{rngs::SmallRng, FromEntropy, Rng};
|
||||
use trifloat::{signed48, unsigned32};
|
||||
use trifloat::{rgb32, signed48, unsigned32};
|
||||
|
||||
//----
|
||||
|
||||
fn unsigned32_encode_100_values(bench: &mut Bencher) {
|
||||
let mut rng = SmallRng::from_entropy();
|
||||
bench.iter(|| {
|
||||
let x = rng.gen::<f32>() - 0.5;
|
||||
let y = rng.gen::<f32>() - 0.5;
|
||||
let z = rng.gen::<f32>() - 0.5;
|
||||
let x = rng.gen::<f32>();
|
||||
let y = rng.gen::<f32>();
|
||||
let z = rng.gen::<f32>();
|
||||
for _ in 0..100 {
|
||||
black_box(unsigned32::encode(black_box((x, y, z))));
|
||||
}
|
||||
|
@ -48,6 +48,28 @@ fn signed48_decode_100_values(bench: &mut Bencher) {
|
|||
});
|
||||
}
|
||||
|
||||
fn rgb32_encode_100_values(bench: &mut Bencher) {
|
||||
let mut rng = SmallRng::from_entropy();
|
||||
bench.iter(|| {
|
||||
let y = rng.gen::<f32>();
|
||||
let x = rng.gen::<f32>();
|
||||
let z = rng.gen::<f32>();
|
||||
for _ in 0..100 {
|
||||
black_box(rgb32::encode(black_box((x, y, z))));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn rgb32_decode_100_values(bench: &mut Bencher) {
|
||||
let mut rng = SmallRng::from_entropy();
|
||||
bench.iter(|| {
|
||||
let v = rng.gen::<u32>();
|
||||
for _ in 0..100 {
|
||||
black_box(rgb32::decode(black_box(v)));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
//----
|
||||
|
||||
benchmark_group!(
|
||||
|
@ -56,5 +78,7 @@ benchmark_group!(
|
|||
unsigned32_decode_100_values,
|
||||
signed48_encode_100_values,
|
||||
signed48_decode_100_values,
|
||||
rgb32_encode_100_values,
|
||||
rgb32_decode_100_values,
|
||||
);
|
||||
benchmark_main!(benches);
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
//! The motivating use-case for this is compactly storing HDR RGB colors. But
|
||||
//! it may be useful for other things as well.
|
||||
|
||||
pub mod rgb32;
|
||||
pub mod signed48;
|
||||
pub mod unsigned32;
|
||||
|
||||
|
|
290
sub_crates/trifloat/src/rgb32.rs
Normal file
290
sub_crates/trifloat/src/rgb32.rs
Normal file
|
@ -0,0 +1,290 @@
|
|||
//! Encoding/decoding for specialized HDR RGB 32-bit storage format.
|
||||
//!
|
||||
//! The motivation for this format is to separate out the luma of
|
||||
//! the color from its chromaticity, in the same spirit as most
|
||||
//! image and video compression approaches, and then allocate more
|
||||
//! data to the luma component since that's what the human eye is
|
||||
//! most sensitive to.
|
||||
//!
|
||||
//! This encoding first transforms into YCoCg colorspace, and then
|
||||
//! fiddles the resulting Y, Co, and Cg components into a special
|
||||
//! 32-bit format. The Y component is stored as an unsigned float,
|
||||
//! with 6 bits of exponent and 10 bits of mantissa. The Co and Cg
|
||||
//! components are stored as 8-bit integers.
|
||||
//!
|
||||
//! The layout is:
|
||||
//!
|
||||
//! 1. Y-exponent: 6 bits
|
||||
//! 2. Y-mantissa: 10 bits
|
||||
//! 3. Co: 8 bits
|
||||
//! 4. Cg: 8 bits
|
||||
//!
|
||||
//! The Y component follows the convention of a mantissa with an
|
||||
//! implicit leading one, giving it 11 bits of precision. The
|
||||
//! exponent has a bias of 24.
|
||||
|
||||
/// Encodes three floating point RGB values into a packed 32-bit format.
|
||||
///
|
||||
/// Warning: negative values and NaN's are _not_ supported. There are
|
||||
/// debug-only assertions in place to catch such values in the input
|
||||
/// floats.
|
||||
#[inline]
|
||||
pub fn encode(floats: (f32, f32, f32)) -> u32 {
|
||||
debug_assert!(
|
||||
floats.0 >= 0.0
|
||||
&& floats.1 >= 0.0
|
||||
&& floats.2 >= 0.0
|
||||
&& !floats.0.is_nan()
|
||||
&& !floats.1.is_nan()
|
||||
&& !floats.2.is_nan(),
|
||||
"trifloat::rgb32::encode(): encoding to unsigned tri-floats only \
|
||||
works correctly for positive, non-NaN numbers, but the numbers passed \
|
||||
were: ({}, {}, {})",
|
||||
floats.0,
|
||||
floats.1,
|
||||
floats.2
|
||||
);
|
||||
|
||||
// Convert to YCoCg colorspace.
|
||||
let y = (floats.0 * 0.25) + (floats.1 * 0.5) + (floats.2 * 0.25);
|
||||
let co = (floats.0 * 0.5) + (floats.2 * -0.5);
|
||||
let cg = (floats.0 * -0.25) + (floats.1 * 0.5) + (floats.2 * -0.25);
|
||||
|
||||
if y <= 0.0 {
|
||||
// Corner case: black.
|
||||
return 0;
|
||||
} else if y.is_infinite() {
|
||||
// Corner case: infinite white.
|
||||
return 0xffff7f7f;
|
||||
}
|
||||
|
||||
// Encode Co and Cg as 8-bit integers.
|
||||
// Note that the max values for each of these will get clamped
|
||||
// very slightly, but that represents extremely saturated
|
||||
// colors, where the human eye is not very sensitive to chroma
|
||||
// differences anyway. And the trade-off is that we can
|
||||
// represent 0.0 (completely unsaturated, no chroma) exactly.
|
||||
let inv_y = 1.0 / y;
|
||||
let co_8bit = ((co * inv_y * 63.5) + 127.5).min(255.0).max(0.0) as u8;
|
||||
let cg_8bit = ((cg * inv_y * 127.0) + 127.5).min(255.0).max(0.0) as u8;
|
||||
|
||||
// Bit-fiddle to get the float components of Y.
|
||||
// This assumes we're working with a standard 32-bit IEEE float.
|
||||
let y_ieee_bits = y.to_bits();
|
||||
let y_mantissa = (y_ieee_bits >> 13) & 0b11_1111_1111;
|
||||
let y_exp = ((y_ieee_bits >> 23) & 0b1111_1111) as i32 - 127;
|
||||
|
||||
// Pack values into a u32 and return.
|
||||
if y_exp <= -24 {
|
||||
// Corner-case:
|
||||
// Luma is so dark that it will be zero at our precision,
|
||||
// and hence black.
|
||||
0
|
||||
} else if y_exp >= 40 {
|
||||
dbg!();
|
||||
// Corner-case:
|
||||
// Luma is so bright that it exceeds our max value, so saturate
|
||||
// the luma.
|
||||
0xffff0000 | ((co_8bit as u32) << 8) | cg_8bit as u32
|
||||
} else {
|
||||
// Common case.
|
||||
let exp = (y_exp + 24) as u32;
|
||||
(exp << 26) | (y_mantissa << 16) | ((co_8bit as u32) << 8) | cg_8bit as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Decodes a packed HDR RGB 32-bit format into three full
|
||||
/// floating point RGB numbers.
|
||||
///
|
||||
/// This operation is lossless and cannot fail.
|
||||
#[inline]
|
||||
pub fn decode(packed_rgb: u32) -> (f32, f32, f32) {
|
||||
// Reconstruct Y, Co, and Cg from the packed bits.
|
||||
let y = {
|
||||
let exp = (packed_rgb & 0xfc00_0000) >> 26;
|
||||
if exp == 0 {
|
||||
0.0
|
||||
} else {
|
||||
f32::from_bits(((exp + 103) << 23) | ((packed_rgb & 0x03ff_0000) >> 3))
|
||||
}
|
||||
};
|
||||
let co = {
|
||||
let co_8bit = (packed_rgb >> 8) & 0xff;
|
||||
((co_8bit as f32) - 127.0) * (1.0 / 63.5) * y
|
||||
};
|
||||
let cg = {
|
||||
let cg_8bit = packed_rgb & 0xff;
|
||||
((cg_8bit as f32) - 127.0) * (1.0 / 127.0) * y
|
||||
};
|
||||
|
||||
// Convert back to RGB.
|
||||
let tmp = y - cg;
|
||||
let r = (tmp + co).max(0.0);
|
||||
let g = (y + cg).max(0.0);
|
||||
let b = (tmp - co).max(0.0);
|
||||
|
||||
(r, g, b)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) {
|
||||
decode(encode(floats))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn all_zeros() {
|
||||
let fs = (0.0f32, 0.0f32, 0.0f32);
|
||||
|
||||
let tri = encode(fs);
|
||||
let fs2 = decode(tri);
|
||||
|
||||
assert_eq!(tri, 0u32);
|
||||
assert_eq!(fs, fs2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn powers_of_two() {
|
||||
let mut n = 1.0f32 / 65536.0;
|
||||
for _ in 0..48 {
|
||||
let fs = (n, n, n);
|
||||
|
||||
assert_eq!(fs, round_trip(fs));
|
||||
n *= 2.0;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn integers() {
|
||||
let mut n = 1.0f32;
|
||||
for _ in 0..2048 {
|
||||
let fs = (n, n, n);
|
||||
|
||||
assert_eq!(fs, round_trip(fs));
|
||||
n += 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn full_saturation() {
|
||||
let fs1 = (1.0, 0.0, 0.0);
|
||||
let fs2 = (0.0, 1.0, 0.0);
|
||||
let fs3 = (0.0, 0.0, 1.0);
|
||||
|
||||
assert_eq!(fs1, round_trip(fs1));
|
||||
assert_eq!(fs2, round_trip(fs2));
|
||||
assert_eq!(fs3, round_trip(fs3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn saturate() {
|
||||
let fs = (10000000000000.0, 10000000000000.0, 10000000000000.0);
|
||||
|
||||
assert_eq!(
|
||||
(1098974760000.0, 1098974760000.0, 1098974760000.0),
|
||||
round_trip(fs)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn inf_saturate() {
|
||||
use std::f32::INFINITY;
|
||||
let fs = (INFINITY, INFINITY, INFINITY);
|
||||
|
||||
assert_eq!(
|
||||
(1098974760000.0, 1098974760000.0, 1098974760000.0),
|
||||
round_trip(fs)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn partial_saturate() {
|
||||
let fs1 = (10000000000000.0, 0.0, 0.0);
|
||||
let fs2 = (0.0, 10000000000000.0, 0.0);
|
||||
let fs3 = (0.0, 0.0, 10000000000000.0);
|
||||
|
||||
assert_eq!(round_trip(fs1), (4395899000000.0, 0.0, 0.0));
|
||||
assert_eq!(round_trip(fs2), (0.0, 2197949500000.0, 0.0));
|
||||
assert_eq!(round_trip(fs3), (0.0, 0.0, 4395899000000.0));
|
||||
}
|
||||
|
||||
// #[test]
|
||||
// fn accuracy() {
|
||||
// let mut n = 1.0;
|
||||
// for _ in 0..256 {
|
||||
// let (x, _, _) = round_trip((n, 0.0, 0.0));
|
||||
// assert_eq!(n, x);
|
||||
// n += 1.0 / 256.0;
|
||||
// }
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// fn rounding() {
|
||||
// let fs = (7.0f32, 513.0f32, 1.0f32);
|
||||
// assert_eq!(round_trip(fs), (8.0, 514.0, 2.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// fn rounding_edge_case() {
|
||||
// let fs = (1023.0f32, 0.0f32, 0.0f32);
|
||||
|
||||
// assert_eq!(round_trip(fs), (1024.0, 0.0, 0.0),);
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// fn smallest_value() {
|
||||
// let fs = (MIN, MIN * 0.5, MIN * 0.49);
|
||||
// assert_eq!(round_trip(fs), (MIN, MIN, 0.0));
|
||||
// assert_eq!(decode(0x00_80_40_00), (MIN, MIN, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// fn underflow() {
|
||||
// let fs = (MIN * 0.49, 0.0, 0.0);
|
||||
// assert_eq!(encode(fs), 0);
|
||||
// assert_eq!(round_trip(fs), (0.0, 0.0, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn nans_01() {
|
||||
// encode((std::f32::NAN, 0.0, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn nans_02() {
|
||||
// encode((0.0, std::f32::NAN, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn nans_03() {
|
||||
// encode((0.0, 0.0, std::f32::NAN));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn negative_01() {
|
||||
// encode((-1.0, 0.0, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn negative_02() {
|
||||
// encode((0.0, -1.0, 0.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// #[should_panic]
|
||||
// fn negative_03() {
|
||||
// encode((0.0, 0.0, -1.0));
|
||||
// }
|
||||
|
||||
// #[test]
|
||||
// fn negative_04() {
|
||||
// encode((-0.0, -0.0, -0.0));
|
||||
// }
|
||||
}
|
Loading…
Reference in New Issue
Block a user