Reformat code with latest rustfmt and custom config.

This commit is contained in:
Nathan Vegdahl 2017-05-14 13:43:51 -07:00
parent 993ba719d7
commit 922e33ec3f
42 changed files with 21399 additions and 2189 deletions

6
rustfmt.toml Normal file
View File

@ -0,0 +1,6 @@
max_width = 1024
error_on_line_overflow = false
array_layout = "Block"
chain_indent = "Block"
fn_args_layout = "Block"
fn_call_style = "Block"

View File

@ -38,11 +38,7 @@ pub enum BVHNode<'a> {
}
impl<'a> BVH<'a> {
pub fn from_objects<'b, T, F>(arena: &'a MemArena,
objects: &mut [T],
objects_per_leaf: usize,
bounder: F)
-> BVH<'a>
pub fn from_objects<'b, T, F>(arena: &'a MemArena, objects: &mut [T], objects_per_leaf: usize, bounder: F) -> BVH<'a>
where F: 'b + Fn(&T) -> &'b [BBox]
{
if objects.len() == 0 {
@ -74,8 +70,11 @@ impl<'a> BVH<'a> {
let mut timer = Timer::new();
let mut trav_time: f64 = 0.0;
let ray_sign =
[rays[0].dir_inv.x() >= 0.0, rays[0].dir_inv.y() >= 0.0, rays[0].dir_inv.z() >= 0.0];
let ray_sign = [
rays[0].dir_inv.x() >= 0.0,
rays[0].dir_inv.y() >= 0.0,
rays[0].dir_inv.z() >= 0.0,
];
// +2 of max depth for root and last child
let mut node_stack = [self.root.unwrap(); BVH_MAX_DEPTH + 2];
@ -84,12 +83,17 @@ impl<'a> BVH<'a> {
while stack_ptr > 0 {
match node_stack[stack_ptr] {
&BVHNode::Internal { children, bounds_start, bounds_len, split_axis } => {
let bounds =
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
(!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r)
});
&BVHNode::Internal {
children,
bounds_start,
bounds_len,
split_axis,
} => {
let bounds = unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let part = partition(
&mut rays[..ray_i_stack[stack_ptr]],
|r| (!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r),
);
if part > 0 {
ray_i_stack[stack_ptr] = part;
ray_i_stack[stack_ptr + 1] = part;
@ -106,12 +110,16 @@ impl<'a> BVH<'a> {
}
}
&BVHNode::Leaf { object_range, bounds_start, bounds_len } => {
let bounds =
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
(!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r)
});
&BVHNode::Leaf {
object_range,
bounds_start,
bounds_len,
} => {
let bounds = unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let part = partition(
&mut rays[..ray_i_stack[stack_ptr]],
|r| (!r.is_done()) && lerp_slice(bounds, r.time).intersect_accel_ray(r),
);
trav_time += timer.tick() as f64;
@ -129,23 +137,24 @@ impl<'a> BVH<'a> {
}
trav_time += timer.tick() as f64;
ACCEL_TRAV_TIME.with(|att| {
let v = att.get();
att.set(v + trav_time);
});
ACCEL_TRAV_TIME.with(
|att| {
let v = att.get();
att.set(v + trav_time);
}
);
}
fn construct_from_base(arena: &'a MemArena,
base: &BVHBase,
node_index: usize)
-> &'a mut BVHNode<'a> {
fn construct_from_base(arena: &'a MemArena, base: &BVHBase, node_index: usize) -> &'a mut BVHNode<'a> {
match &base.nodes[node_index] {
&BVHBaseNode::Internal { bounds_range, children_indices, split_axis } => {
&BVHBaseNode::Internal {
bounds_range,
children_indices,
split_axis,
} => {
let mut node = unsafe { arena.alloc_uninitialized_with_alignment::<BVHNode>(32) };
let bounds =
arena.copy_slice_with_alignment(&base.bounds[bounds_range.0..bounds_range.1],
32);
let bounds = arena.copy_slice_with_alignment(&base.bounds[bounds_range.0..bounds_range.1], 32);
let child1 = BVH::construct_from_base(arena, base, children_indices.0);
let child2 = BVH::construct_from_base(arena, base, children_indices.1);
@ -159,7 +168,10 @@ impl<'a> BVH<'a> {
return node;
}
&BVHBaseNode::Leaf { bounds_range, object_range } => {
&BVHBaseNode::Leaf {
bounds_range,
object_range,
} => {
let mut node = unsafe { arena.alloc_uninitialized::<BVHNode>() };
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
@ -185,13 +197,17 @@ impl<'a> Boundable for BVH<'a> {
None => &DEGENERATE_BOUNDS[..],
Some(root) => {
match root {
&BVHNode::Internal { bounds_start, bounds_len, .. } => {
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) }
}
&BVHNode::Internal {
bounds_start,
bounds_len,
..
} => unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) },
&BVHNode::Leaf { bounds_start, bounds_len, .. } => {
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) }
}
&BVHNode::Leaf {
bounds_start,
bounds_len,
..
} => unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) },
}
}
}

View File

@ -94,13 +94,7 @@ impl BVHBase {
}
}
fn recursive_build<'a, T, F>(&mut self,
offset: usize,
depth: usize,
objects_per_leaf: usize,
objects: &mut [T],
bounder: &F)
-> (usize, (usize, usize))
fn recursive_build<'a, T, F>(&mut self, offset: usize, depth: usize, objects_per_leaf: usize, objects: &mut [T], bounder: &F) -> (usize, (usize, usize))
where F: 'a + Fn(&T) -> &'a [BBox]
{
let me = self.nodes.len();
@ -115,10 +109,12 @@ impl BVHBase {
// We make sure that it's worth having multiple time samples, and if not
// we reduce to the union of the time samples.
self.acc_bounds(objects, bounder);
let union_bounds = self.bounds_cache.iter().fold(BBox::new(), |b1, b2| (b1 | *b2));
let average_area =
self.bounds_cache.iter().fold(0.0, |area, bb| area + bb.surface_area()) /
self.bounds_cache.len() as f32;
let union_bounds = self.bounds_cache
.iter()
.fold(BBox::new(), |b1, b2| (b1 | *b2));
let average_area = self.bounds_cache
.iter()
.fold(0.0, |area, bb| area + bb.surface_area()) / self.bounds_cache.len() as f32;
if union_bounds.surface_area() <= (average_area * USE_UNION_FACTOR) {
self.bounds.push(union_bounds);
} else {
@ -127,10 +123,13 @@ impl BVHBase {
}
// Create node
self.nodes.push(BVHBaseNode::Leaf {
bounds_range: (bi, self.bounds.len()),
object_range: (offset, offset + objects.len()),
});
self.nodes
.push(
BVHBaseNode::Leaf {
bounds_range: (bi, self.bounds.len()),
object_range: (offset, offset + objects.len()),
}
);
if self.depth < depth {
self.depth = depth;
@ -139,18 +138,20 @@ impl BVHBase {
return (me, (bi, self.bounds.len()));
} else {
// Not a leaf node
self.nodes.push(BVHBaseNode::Internal {
bounds_range: (0, 0),
children_indices: (0, 0),
split_axis: 0,
});
self.nodes
.push(
BVHBaseNode::Internal {
bounds_range: (0, 0),
children_indices: (0, 0),
split_axis: 0,
}
);
// Partition objects.
// If we're too near the max depth, we do balanced building to
// avoid exceeding max depth.
// Otherwise we do SAH splitting to build better trees.
let (split_index, split_axis) = if (log2_64(objects.len() as u64) as usize) <
(BVH_MAX_DEPTH - depth) {
let (split_index, split_axis) = if (log2_64(objects.len() as u64) as usize) < (BVH_MAX_DEPTH - depth) {
// SAH splitting, when we have room to play
sah_split(objects, &bounder)
} else {
@ -159,31 +160,36 @@ impl BVHBase {
};
// Create child nodes
let (c1_index, c1_bounds) = self.recursive_build(offset,
depth + 1,
objects_per_leaf,
&mut objects[..split_index],
bounder);
let (c2_index, c2_bounds) = self.recursive_build(offset + split_index,
depth + 1,
objects_per_leaf,
&mut objects[split_index..],
bounder);
let (c1_index, c1_bounds) = self.recursive_build(
offset,
depth + 1,
objects_per_leaf,
&mut objects[..split_index],
bounder,
);
let (c2_index, c2_bounds) = self.recursive_build(
offset + split_index,
depth + 1,
objects_per_leaf,
&mut objects[split_index..],
bounder,
);
// Determine bounds
// TODO: do merging without the temporary vec.
let bi = self.bounds.len();
{
let mut merged = Vec::new();
merge_slices_append(&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2);
merge_slices_append(
&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2,
);
// We make sure that it's worth having multiple time samples, and if not
// we reduce to the union of the time samples.
let union_bounds = merged.iter().fold(BBox::new(), |b1, b2| (b1 | *b2));
let average_area = merged.iter().fold(0.0, |area, bb| area + bb.surface_area()) /
merged.len() as f32;
let average_area = merged.iter().fold(0.0, |area, bb| area + bb.surface_area()) / merged.len() as f32;
if union_bounds.surface_area() <= (average_area * USE_UNION_FACTOR) {
self.bounds.push(union_bounds);
} else {

View File

@ -34,14 +34,7 @@ impl LightArray {
}
impl LightAccel for LightArray {
fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)> {
fn select(&self, inc: Vector, pos: Point, nor: Normal, sc: &SurfaceClosure, time: f32, n: f32) -> Option<(usize, f32, f32)> {
let _ = (inc, pos, nor, sc, time); // Not using these, silence warnings
assert!(n >= 0.0 && n <= 1.0);

View File

@ -26,10 +26,7 @@ struct Node {
}
impl<'a> LightTree<'a> {
pub fn from_objects<'b, T, F>(arena: &'a MemArena,
objects: &mut [T],
info_getter: F)
-> LightTree<'a>
pub fn from_objects<'b, T, F>(arena: &'a MemArena, objects: &mut [T], info_getter: F) -> LightTree<'a>
where F: 'b + Fn(&T) -> (&'b [BBox], f32)
{
let mut builder = LightTreeBuilder::new();
@ -45,14 +42,7 @@ impl<'a> LightTree<'a> {
impl<'a> LightAccel for LightTree<'a> {
fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)> {
fn select(&self, inc: Vector, pos: Point, nor: Normal, sc: &SurfaceClosure, time: f32, n: f32) -> Option<(usize, f32, f32)> {
if self.nodes.len() == 0 {
return None;
}
@ -151,12 +141,7 @@ impl LightTreeBuilder {
}
}
fn recursive_build<'a, T, F>(&mut self,
offset: usize,
depth: usize,
objects: &mut [T],
info_getter: &F)
-> (usize, (usize, usize))
fn recursive_build<'a, T, F>(&mut self, offset: usize, depth: usize, objects: &mut [T], info_getter: &F) -> (usize, (usize, usize))
where F: 'a + Fn(&T) -> (&'a [BBox], f32)
{
let me_index = self.nodes.len();
@ -168,12 +153,15 @@ impl LightTreeBuilder {
let bi = self.bounds.len();
let (obj_bounds, energy) = info_getter(&objects[0]);
self.bounds.extend(obj_bounds);
self.nodes.push(Node {
is_leaf: true,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: offset,
});
self.nodes
.push(
Node {
is_leaf: true,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: offset,
}
);
if self.depth < depth {
self.depth = depth;
@ -182,32 +170,38 @@ impl LightTreeBuilder {
return (me_index, (bi, self.bounds.len()));
} else {
// Not a leaf node
self.nodes.push(Node {
is_leaf: false,
bounds_range: (0, 0),
energy: 0.0,
child_index: 0,
});
self.nodes
.push(
Node {
is_leaf: false,
bounds_range: (0, 0),
energy: 0.0,
child_index: 0,
}
);
// Partition objects.
let (split_index, _) = sah_split(objects, &|obj_ref| info_getter(obj_ref).0);
// Create child nodes
let (_, c1_bounds) =
self.recursive_build(offset, depth + 1, &mut objects[..split_index], info_getter);
let (c2_index, c2_bounds) = self.recursive_build(offset + split_index,
depth + 1,
&mut objects[split_index..],
info_getter);
let (_, c1_bounds) = self.recursive_build(offset, depth + 1, &mut objects[..split_index], info_getter);
let (c2_index, c2_bounds) = self.recursive_build(
offset + split_index,
depth + 1,
&mut objects[split_index..],
info_getter,
);
// Determine bounds
// TODO: do merging without the temporary vec.
let bi = self.bounds.len();
let mut merged = Vec::new();
merge_slices_append(&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2);
merge_slices_append(
&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2,
);
self.bounds.extend(merged.drain(0..));
// Set node

View File

@ -19,14 +19,7 @@ thread_local! {
pub trait LightAccel {
/// Returns (index_of_light, selection_pdf, whittled_n)
fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)>;
fn select(&self, inc: Vector, pos: Point, nor: Normal, sc: &SurfaceClosure, time: f32, n: f32) -> Option<(usize, f32, f32)>;
fn approximate_energy(&self) -> f32;
}

View File

@ -65,8 +65,7 @@ pub fn free_sah_split<'a, T, F>(seed: u32, objects: &mut [T], bounder: &F) -> (u
// Build SAH bins
let sah_bins = {
let mut sah_bins = [[(BBox::new(), BBox::new(), 0, 0); SAH_BIN_COUNT - 1];
SPLIT_PLANE_COUNT];
let mut sah_bins = [[(BBox::new(), BBox::new(), 0, 0); SAH_BIN_COUNT - 1]; SPLIT_PLANE_COUNT];
for obj in objects.iter() {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = tb.center().into_vector();
@ -132,11 +131,13 @@ pub fn free_sah_split<'a, T, F>(seed: u32, objects: &mut [T], bounder: &F) -> (u
};
// Partition
let mut split_i = partition(&mut objects[..], |obj| {
let centroid = lerp_slice(bounder(obj), 0.5).center().into_vector();
let dist = dot(centroid, plane);
dist < div
});
let mut split_i = partition(
&mut objects[..], |obj| {
let centroid = lerp_slice(bounder(obj), 0.5).center().into_vector();
let dist = dot(centroid, plane);
dist < div
}
);
if split_i < 1 {
split_i = 1;
@ -223,11 +224,13 @@ pub fn sah_split<'a, T, F>(objects: &mut [T], bounder: &F) -> (usize, usize)
};
// Partition
let mut split_i = partition(&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
});
let mut split_i = partition(
&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
}
);
if split_i < 1 {
split_i = 1;
} else if split_i >= objects.len() {
@ -269,11 +272,13 @@ pub fn bounds_mean_split<'a, T, F>(objects: &mut [T], bounder: &F) -> (usize, us
let div = (bounds.min.get_n(split_axis) + bounds.max.get_n(split_axis)) * 0.5;
// Partition
let mut split_i = partition(&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
});
let mut split_i = partition(
&mut objects[..], |obj| {
let tb = lerp_slice(bounder(obj), 0.5);
let centroid = (tb.min.get_n(split_axis) + tb.max.get_n(split_axis)) * 0.5;
centroid < div
}
);
if split_i < 1 {
split_i = 1;
} else if split_i >= objects.len() {
@ -317,20 +322,22 @@ pub fn median_split<'a, T, F>(objects: &mut [T], bounder: &F) -> (usize, usize)
let place = objects.len() / 2;
if place > 0 { place } else { 1 }
};
quick_select(objects, place, |a, b| {
let tb_a = lerp_slice(bounder(a), 0.5);
let tb_b = lerp_slice(bounder(b), 0.5);
let centroid_a = (tb_a.min.get_n(split_axis) + tb_a.max.get_n(split_axis)) * 0.5;
let centroid_b = (tb_b.min.get_n(split_axis) + tb_b.max.get_n(split_axis)) * 0.5;
quick_select(
objects, place, |a, b| {
let tb_a = lerp_slice(bounder(a), 0.5);
let tb_b = lerp_slice(bounder(b), 0.5);
let centroid_a = (tb_a.min.get_n(split_axis) + tb_a.max.get_n(split_axis)) * 0.5;
let centroid_b = (tb_b.min.get_n(split_axis) + tb_b.max.get_n(split_axis)) * 0.5;
if centroid_a < centroid_b {
Ordering::Less
} else if centroid_a == centroid_b {
Ordering::Equal
} else {
Ordering::Greater
if centroid_a < centroid_b {
Ordering::Less
} else if centroid_a == centroid_b {
Ordering::Equal
} else {
Ordering::Greater
}
}
});
);
(place, split_axis)
}

View File

@ -159,9 +159,11 @@ pub fn partition_pair<A, B, F>(slc1: &mut [A], slc2: &mut [B], mut pred: F) -> u
if a1 == b1 {
return ((a1 as usize) - start) / std::mem::size_of::<A>();
}
if !pred(((a1 as usize) - start) / std::mem::size_of::<A>(),
&mut *a1,
&mut *a2) {
if !pred(
((a1 as usize) - start) / std::mem::size_of::<A>(),
&mut *a1,
&mut *a2,
) {
break;
}
a1 = a1.offset(1);
@ -174,9 +176,11 @@ pub fn partition_pair<A, B, F>(slc1: &mut [A], slc2: &mut [B], mut pred: F) -> u
if a1 == b1 {
return ((a1 as usize) - start) / std::mem::size_of::<A>();
}
if pred(((b1 as usize) - start) / std::mem::size_of::<A>(),
&mut *b1,
&mut *b2) {
if pred(
((b1 as usize) - start) / std::mem::size_of::<A>(),
&mut *b1,
&mut *b2,
) {
break;
}
}
@ -205,9 +209,9 @@ pub fn quick_select<T, F>(slc: &mut [T], n: usize, mut order: F)
slc.swap(i, right - 1);
let ii = left +
{
let (val, list) = (&mut slc[left..right]).split_last_mut().unwrap();
partition(list, |n| order(n, val) == Ordering::Less)
};
let (val, list) = (&mut slc[left..right]).split_last_mut().unwrap();
partition(list, |n| order(n, val) == Ordering::Less)
};
slc.swap(ii, right - 1);
if ii == n {
@ -223,10 +227,7 @@ pub fn quick_select<T, F>(slc: &mut [T], n: usize, mut order: F)
}
/// Merges two slices of things, appending the result to vec_out
pub fn merge_slices_append<T: Lerp + Copy, F>(slice1: &[T],
slice2: &[T],
vec_out: &mut Vec<T>,
merge: F)
pub fn merge_slices_append<T: Lerp + Copy, F>(slice1: &[T], slice2: &[T], vec_out: &mut Vec<T>, merge: F)
where F: Fn(&T, &T) -> T
{
// Transform the bounding boxes
@ -253,10 +254,7 @@ pub fn merge_slices_append<T: Lerp + Copy, F>(slice1: &[T],
/// Merges two slices of things, storing the result in slice_out.
/// Panics if slice_out is not the right size.
pub fn merge_slices_to<T: Lerp + Copy, F>(slice1: &[T],
slice2: &[T],
slice_out: &mut [T],
merge: F)
pub fn merge_slices_to<T: Lerp + Copy, F>(slice1: &[T], slice2: &[T], slice_out: &mut [T], merge: F)
where F: Fn(&T, &T) -> T
{
assert!(slice_out.len() == cmp::max(slice1.len(), slice2.len()));
@ -266,8 +264,10 @@ pub fn merge_slices_to<T: Lerp + Copy, F>(slice1: &[T],
return;
} else if slice1.len() == slice2.len() {
for (xfo, (xf1, xf2)) in
Iterator::zip(slice_out.iter_mut(),
Iterator::zip(slice1.iter(), slice2.iter())) {
Iterator::zip(
slice_out.iter_mut(),
Iterator::zip(slice1.iter(), slice2.iter()),
) {
*xfo = merge(xf1, xf2);
}
} else if slice1.len() > slice2.len() {
@ -291,13 +291,15 @@ mod tests {
use super::*;
fn quick_select_ints(list: &mut [i32], i: usize) {
quick_select(list, i, |a, b| if a < b {
Ordering::Less
} else if a == b {
Ordering::Equal
} else {
Ordering::Greater
});
quick_select(
list, i, |a, b| if a < b {
Ordering::Less
} else if a == b {
Ordering::Equal
} else {
Ordering::Greater
}
);
}
#[test]

View File

@ -23,19 +23,18 @@ impl BBox {
pub fn new() -> BBox {
BBox {
min: Point::new(std::f32::INFINITY, std::f32::INFINITY, std::f32::INFINITY),
max: Point::new(std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY),
max: Point::new(
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
),
}
}
/// Creates a BBox with min as the minimum extent and max as the maximum
/// extent.
pub fn from_points(min: Point, max: Point) -> BBox {
BBox {
min: min,
max: max,
}
BBox { min: min, max: max }
}
// Returns whether the given ray intersects with the bbox.
@ -59,14 +58,16 @@ impl BBox {
// Creates a new BBox transformed into a different space.
pub fn transformed(&self, xform: Matrix4x4) -> BBox {
// BBox corners
let vs = [Point::new(self.min.x(), self.min.y(), self.min.z()),
Point::new(self.min.x(), self.min.y(), self.max.z()),
Point::new(self.min.x(), self.max.y(), self.min.z()),
Point::new(self.min.x(), self.max.y(), self.max.z()),
Point::new(self.max.x(), self.min.y(), self.min.z()),
Point::new(self.max.x(), self.min.y(), self.max.z()),
Point::new(self.max.x(), self.max.y(), self.min.z()),
Point::new(self.max.x(), self.max.y(), self.max.z())];
let vs = [
Point::new(self.min.x(), self.min.y(), self.min.z()),
Point::new(self.min.x(), self.min.y(), self.max.z()),
Point::new(self.min.x(), self.max.y(), self.min.z()),
Point::new(self.min.x(), self.max.y(), self.max.z()),
Point::new(self.max.x(), self.min.y(), self.min.z()),
Point::new(self.max.x(), self.min.y(), self.max.z()),
Point::new(self.max.x(), self.max.y(), self.min.z()),
Point::new(self.max.x(), self.max.y(), self.max.z()),
];
// Transform BBox corners and make new bbox
let mut b = BBox::new();
@ -99,8 +100,10 @@ impl BitOr for BBox {
type Output = BBox;
fn bitor(self, rhs: BBox) -> BBox {
BBox::from_points(Point { co: self.min.co.v_min(rhs.min.co) },
Point { co: self.max.co.v_max(rhs.max.co) })
BBox::from_points(
Point { co: self.min.co.v_min(rhs.min.co) },
Point { co: self.max.co.v_max(rhs.max.co) },
)
}
}
@ -115,8 +118,10 @@ impl BitOr<Point> for BBox {
type Output = BBox;
fn bitor(self, rhs: Point) -> BBox {
BBox::from_points(Point { co: self.min.co.v_min(rhs.co) },
Point { co: self.max.co.v_max(rhs.co) })
BBox::from_points(
Point { co: self.min.co.v_min(rhs.co) },
Point { co: self.max.co.v_max(rhs.co) },
)
}
}

View File

@ -18,12 +18,7 @@ pub struct Camera<'a> {
}
impl<'a> Camera<'a> {
pub fn new(arena: &'a MemArena,
transforms: Vec<Matrix4x4>,
fovs: Vec<f32>,
mut aperture_radii: Vec<f32>,
mut focus_distances: Vec<f32>)
-> Camera<'a> {
pub fn new(arena: &'a MemArena, transforms: Vec<Matrix4x4>, fovs: Vec<f32>, mut aperture_radii: Vec<f32>, mut focus_distances: Vec<f32>) -> Camera<'a> {
assert!(transforms.len() != 0, "Camera has no transform(s)!");
assert!(fovs.len() != 0, "Camera has no fov(s)!");
@ -33,11 +28,15 @@ impl<'a> Camera<'a> {
focus_distances = vec![1.0];
if aperture_radii.len() == 0 && focus_distances.len() != 0 {
println!("WARNING: camera has aperture radius but no focus distance. Disabling \
focal blur.");
println!(
"WARNING: camera has aperture radius but no focus distance. Disabling \
focal blur."
);
} else if aperture_radii.len() != 0 && focus_distances.len() == 0 {
println!("WARNING: camera has focus distance but no aperture radius. Disabling \
focal blur.");
println!(
"WARNING: camera has focus distance but no aperture radius. Disabling \
focal blur."
);
}
}
@ -51,7 +50,9 @@ impl<'a> Camera<'a> {
}
// Convert angle fov into linear fov.
let tfovs: Vec<f32> = fovs.iter().map(|n| (n / 2.0).sin() / (n / 2.0).cos()).collect();
let tfovs: Vec<f32> = fovs.iter()
.map(|n| (n / 2.0).sin() / (n / 2.0).cos())
.collect();
Camera {
transforms: arena.copy_slice(&transforms),
@ -76,10 +77,12 @@ impl<'a> Camera<'a> {
};
// Ray direction
let dir = Vector::new((x * tfov) - (orig.x() / focus_distance),
(y * tfov) - (orig.y() / focus_distance),
1.0)
.normalized();
let dir = Vector::new(
(x * tfov) - (orig.x() / focus_distance),
(y * tfov) - (orig.y() / focus_distance),
1.0,
)
.normalized();
Ray::new(orig * transform, dir * transform, time, false)
}

View File

@ -22,10 +22,12 @@ pub trait Color {
fn to_spectral_sample(&self, hero_wavelength: f32) -> SpectralSample {
SpectralSample {
e: Float4::new(self.sample_spectrum(nth_wavelength(hero_wavelength, 0)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 1)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 2)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 3))),
e: Float4::new(
self.sample_spectrum(nth_wavelength(hero_wavelength, 0)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 1)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 2)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 3)),
),
hero_wavelength: hero_wavelength,
}
@ -260,17 +262,13 @@ impl DivAssign<f32> for XYZ {
/// colorspace cannot represent all colors in the XYZ colorspace.
#[allow(dead_code)]
pub fn xyz_to_rec709(xyz: (f32, f32, f32)) -> (f32, f32, f32) {
((xyz.0 * 3.2404542) + (xyz.1 * -1.5371385) + (xyz.2 * -0.4985314),
(xyz.0 * -0.9692660) + (xyz.1 * 1.8760108) + (xyz.2 * 0.0415560),
(xyz.0 * 0.0556434) + (xyz.1 * -0.2040259) + (xyz.2 * 1.0572252))
((xyz.0 * 3.2404542) + (xyz.1 * -1.5371385) + (xyz.2 * -0.4985314), (xyz.0 * -0.9692660) + (xyz.1 * 1.8760108) + (xyz.2 * 0.0415560), (xyz.0 * 0.0556434) + (xyz.1 * -0.2040259) + (xyz.2 * 1.0572252))
}
/// Converts a color in Rec.709 colorspace to XYZ colorspace.
#[allow(dead_code)]
pub fn rec709_to_xyz(rec: (f32, f32, f32)) -> (f32, f32, f32) {
((rec.0 * 0.4124564) + (rec.1 * 0.3575761) + (rec.2 * 0.1804375),
(rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750),
(rec.0 * 0.0193339) + (rec.1 * 0.1191920) + (rec.2 * 0.9503041))
((rec.0 * 0.4124564) + (rec.1 * 0.3575761) + (rec.2 * 0.1804375), (rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750), (rec.0 * 0.0193339) + (rec.1 * 0.1191920) + (rec.2 * 0.9503041))
}
/// Converts a color in XYZ colorspace to an adjusted Rec.709 colorspace
@ -278,18 +276,14 @@ pub fn rec709_to_xyz(rec: (f32, f32, f32)) -> (f32, f32, f32) {
/// Note: this is lossy, as negative resulting values are clamped to zero.
#[allow(dead_code)]
pub fn xyz_to_rec709e(xyz: (f32, f32, f32)) -> (f32, f32, f32) {
((xyz.0 * 3.0799600) + (xyz.1 * -1.5371400) + (xyz.2 * -0.5428160),
(xyz.0 * -0.9212590) + (xyz.1 * 1.8760100) + (xyz.2 * 0.0452475),
(xyz.0 * 0.0528874) + (xyz.1 * -0.2040260) + (xyz.2 * 1.1511400))
((xyz.0 * 3.0799600) + (xyz.1 * -1.5371400) + (xyz.2 * -0.5428160), (xyz.0 * -0.9212590) + (xyz.1 * 1.8760100) + (xyz.2 * 0.0452475), (xyz.0 * 0.0528874) + (xyz.1 * -0.2040260) + (xyz.2 * 1.1511400))
}
/// Converts a color in an adjusted Rec.709 colorspace with whitepoint E to
/// XYZ colorspace.
#[allow(dead_code)]
pub fn rec709e_to_xyz(rec: (f32, f32, f32)) -> (f32, f32, f32) {
((rec.0 * 0.4339499) + (rec.1 * 0.3762098) + (rec.2 * 0.1898403),
(rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750),
(rec.0 * 0.0177566) + (rec.1 * 0.1094680) + (rec.2 * 0.8727755))
((rec.0 * 0.4339499) + (rec.1 * 0.3762098) + (rec.2 * 0.1898403), (rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750), (rec.0 * 0.0177566) + (rec.1 * 0.1094680) + (rec.2 * 0.8727755))
}
@ -309,8 +303,7 @@ fn x_1931(wavelength: f32) -> f32 {
let t1 = (wavelength - 442.0) * (if wavelength < 442.0 { 0.0624 } else { 0.0374 });
let t2 = (wavelength - 599.8) * (if wavelength < 599.8 { 0.0264 } else { 0.0323 });
let t3 = (wavelength - 501.1) * (if wavelength < 501.1 { 0.0490 } else { 0.0382 });
(0.362 * faster_exp(-0.5 * t1 * t1)) + (1.056 * faster_exp(-0.5 * t2 * t2)) -
(0.065 * faster_exp(-0.5 * t3 * t3))
(0.362 * faster_exp(-0.5 * t1 * t1)) + (1.056 * faster_exp(-0.5 * t2 * t2)) - (0.065 * faster_exp(-0.5 * t3 * t3))
}
#[allow(dead_code)]

View File

@ -142,12 +142,14 @@ impl Image {
}
// Write file
if let Err(_) = lodepng::encode_file(path,
&image,
self.res.0,
self.res.1,
lodepng::ColorType::LCT_RGB,
8) {
if let Err(_) = lodepng::encode_file(
path,
&image,
self.res.0,
self.res.1,
lodepng::ColorType::LCT_RGB,
8,
) {
panic!("Couldn't write PNG file.");
}
@ -222,10 +224,9 @@ impl<'a> Drop for Bucket<'a> {
let mut bucket_list = tmp.borrow_mut();
// Find matching bucket and remove it
let i = bucket_list.iter().position(|bucket| {
(bucket.0).0 == self.min.0 && (bucket.0).1 == self.min.1 &&
(bucket.1).0 == self.max.0 && (bucket.1).1 == self.max.1
});
let i = bucket_list
.iter()
.position(|bucket| (bucket.0).0 == self.min.0 && (bucket.0).1 == self.min.1 && (bucket.1).0 == self.max.0 && (bucket.1).1 == self.max.1);
bucket_list.swap_remove(i.unwrap());
}
}

View File

@ -21,7 +21,9 @@ pub fn lerp<T: Lerp>(a: T, b: T, alpha: f32) -> T {
/// Interpolates a slice of data as if each adjecent pair of elements
/// represent a linear segment.
pub fn lerp_slice<T: Lerp + Copy>(s: &[T], alpha: f32) -> T {
debug_assert!(s.len() > 0);
debug_assert!(
s.len() > 0,
);
debug_assert!(alpha >= 0.0);
debug_assert!(alpha <= 1.0);
@ -41,7 +43,9 @@ pub fn lerp_slice_with<T, F>(s: &[T], alpha: f32, f: F) -> T
where T: Copy,
F: Fn(T, T, f32) -> T
{
debug_assert!(s.len() > 0);
debug_assert!(
s.len() > 0,
);
debug_assert!(alpha >= 0.0);
debug_assert!(alpha <= 1.0);
@ -86,10 +90,12 @@ impl Lerp for Matrix4x4 {
fn lerp(self, other: Matrix4x4, alpha: f32) -> Matrix4x4 {
let alpha_minus = 1.0 - alpha;
Matrix4x4 {
values: [(self[0] * alpha_minus) + (other[0] * alpha),
(self[1] * alpha_minus) + (other[1] * alpha),
(self[2] * alpha_minus) + (other[2] * alpha),
(self[3] * alpha_minus) + (other[3] * alpha)],
values: [
(self[0] * alpha_minus) + (other[0] * alpha),
(self[1] * alpha_minus) + (other[1] * alpha),
(self[2] * alpha_minus) + (other[2] * alpha),
(self[3] * alpha_minus) + (other[3] * alpha),
],
}
}
}
@ -198,87 +204,97 @@ mod tests {
#[test]
fn lerp_matrix() {
let a = Matrix4x4::new_from_values(0.0,
2.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0);
let b = Matrix4x4::new_from_values(-1.0,
1.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0,
16.0);
let a = Matrix4x4::new_from_values(
0.0,
2.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0,
);
let b = Matrix4x4::new_from_values(
-1.0,
1.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0,
16.0,
);
let c1 = Matrix4x4::new_from_values(-0.25,
1.75,
2.25,
3.25,
4.25,
5.25,
6.25,
7.25,
8.25,
9.25,
10.25,
11.25,
12.25,
13.25,
14.25,
15.25);
let c2 = Matrix4x4::new_from_values(-0.5,
1.5,
2.5,
3.5,
4.5,
5.5,
6.5,
7.5,
8.5,
9.5,
10.5,
11.5,
12.5,
13.5,
14.5,
15.5);
let c3 = Matrix4x4::new_from_values(-0.75,
1.25,
2.75,
3.75,
4.75,
5.75,
6.75,
7.75,
8.75,
9.75,
10.75,
11.75,
12.75,
13.75,
14.75,
15.75);
let c1 = Matrix4x4::new_from_values(
-0.25,
1.75,
2.25,
3.25,
4.25,
5.25,
6.25,
7.25,
8.25,
9.25,
10.25,
11.25,
12.25,
13.25,
14.25,
15.25,
);
let c2 = Matrix4x4::new_from_values(
-0.5,
1.5,
2.5,
3.5,
4.5,
5.5,
6.5,
7.5,
8.5,
9.5,
10.5,
11.5,
12.5,
13.5,
14.5,
15.5,
);
let c3 = Matrix4x4::new_from_values(
-0.75,
1.25,
2.75,
3.75,
4.75,
5.75,
6.75,
7.75,
8.75,
9.75,
10.75,
11.75,
12.75,
13.75,
14.75,
15.75,
);
assert_eq!(a.lerp(b, 0.0), a);
assert_eq!(a.lerp(b, 0.25), c1);

View File

@ -19,11 +19,7 @@ pub struct DistantDiskLight<'a> {
}
impl<'a> DistantDiskLight<'a> {
pub fn new(arena: &'a MemArena,
radii: Vec<f32>,
directions: Vec<Vector>,
colors: Vec<XYZ>)
-> DistantDiskLight<'a> {
pub fn new(arena: &'a MemArena, radii: Vec<f32>, directions: Vec<Vector>, colors: Vec<XYZ>) -> DistantDiskLight<'a> {
DistantDiskLight {
radii: arena.copy_slice(&radii),
directions: arena.copy_slice(&directions),
@ -79,8 +75,9 @@ impl<'a> WorldLightSource for DistantDiskLight<'a> {
}
fn approximate_energy(&self) -> f32 {
let color: XYZ = self.colors.iter().fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) /
self.colors.len() as f32;
let color: XYZ = self.colors
.iter()
.fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) / self.colors.len() as f32;
color.y
}
}

View File

@ -26,14 +26,7 @@ pub trait LightSource: Boundable + Debug + Sync {
///
/// Returns: The light arriving at the point arr, the vector to use for
/// shadow testing, and the pdf of the sample.
fn sample(&self,
space: &Matrix4x4,
arr: Point,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> (SpectralSample, Vector, f32);
fn sample(&self, space: &Matrix4x4, arr: Point, u: f32, v: f32, wavelength: f32, time: f32) -> (SpectralSample, Vector, f32);
/// Calculates the pdf of sampling the given
@ -44,15 +37,7 @@ pub trait LightSource: Boundable + Debug + Sync {
/// are a valid sample for the light source (i.e. hits/lies on the light
/// source). No guarantees are made about the correctness of the return
/// value if they are not valid.
fn sample_pdf(&self,
space: &Matrix4x4,
arr: Point,
sample_dir: Vector,
sample_u: f32,
sample_v: f32,
wavelength: f32,
time: f32)
-> f32;
fn sample_pdf(&self, space: &Matrix4x4, arr: Point, sample_dir: Vector, sample_u: f32, sample_v: f32, wavelength: f32, time: f32) -> f32;
/// Returns the color emitted in the given direction from the
@ -63,14 +48,7 @@ pub trait LightSource: Boundable + Debug + Sync {
/// - v: Random parameter V.
/// - wavelength: The hero wavelength of light to sample at.
/// - time: The time to sample at.
fn outgoing(&self,
space: &Matrix4x4,
dir: Vector,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> SpectralSample;
fn outgoing(&self, space: &Matrix4x4, dir: Vector, u: f32, v: f32, wavelength: f32, time: f32) -> SpectralSample;
/// Returns whether the light has a delta distribution.

View File

@ -18,17 +18,17 @@ pub struct RectangleLight<'a> {
}
impl<'a> RectangleLight<'a> {
pub fn new<'b>(arena: &'b MemArena,
dimensions: Vec<(f32, f32)>,
colors: Vec<XYZ>)
-> RectangleLight<'b> {
let bbs: Vec<_> = dimensions.iter()
.map(|d| {
BBox {
min: Point::new(d.0 * -0.5, d.1 * -0.5, 0.0),
max: Point::new(d.0 * 0.5, d.1 * 0.5, 0.0),
pub fn new<'b>(arena: &'b MemArena, dimensions: Vec<(f32, f32)>, colors: Vec<XYZ>) -> RectangleLight<'b> {
let bbs: Vec<_> = dimensions
.iter()
.map(
|d| {
BBox {
min: Point::new(d.0 * -0.5, d.1 * -0.5, 0.0),
max: Point::new(d.0 * 0.5, d.1 * 0.5, 0.0),
}
}
})
)
.collect();
RectangleLight {
dimensions: arena.copy_slice(&dimensions),
@ -39,14 +39,7 @@ impl<'a> RectangleLight<'a> {
}
impl<'a> LightSource for RectangleLight<'a> {
fn sample(&self,
space: &Matrix4x4,
arr: Point,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> (SpectralSample, Vector, f32) {
fn sample(&self, space: &Matrix4x4, arr: Point, u: f32, v: f32, wavelength: f32, time: f32) -> (SpectralSample, Vector, f32) {
// Calculate time interpolated values
let dim = lerp_slice(&self.dimensions, time);
let col = lerp_slice(&self.colors, time);
@ -105,15 +98,7 @@ impl<'a> LightSource for RectangleLight<'a> {
return (spectral_sample, shadow_vec, pdf as f32);
}
fn sample_pdf(&self,
space: &Matrix4x4,
arr: Point,
sample_dir: Vector,
sample_u: f32,
sample_v: f32,
wavelength: f32,
time: f32)
-> f32 {
fn sample_pdf(&self, space: &Matrix4x4, arr: Point, sample_dir: Vector, sample_u: f32, sample_v: f32, wavelength: f32, time: f32) -> f32 {
// We're not using these, silence warnings
let _ = (sample_dir, sample_u, sample_v, wavelength);
@ -140,14 +125,7 @@ impl<'a> LightSource for RectangleLight<'a> {
1.0 / (area_1 + area_2)
}
fn outgoing(&self,
space: &Matrix4x4,
dir: Vector,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> SpectralSample {
fn outgoing(&self, space: &Matrix4x4, dir: Vector, u: f32, v: f32, wavelength: f32, time: f32) -> SpectralSample {
// We're not using these, silence warnings
let _ = (space, dir, u, v);
@ -165,8 +143,9 @@ impl<'a> LightSource for RectangleLight<'a> {
}
fn approximate_energy(&self) -> f32 {
let color: XYZ = self.colors.iter().fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) /
self.colors.len() as f32;
let color: XYZ = self.colors
.iter()
.fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) / self.colors.len() as f32;
color.y
}
}

View File

@ -22,13 +22,16 @@ pub struct SphereLight<'a> {
impl<'a> SphereLight<'a> {
pub fn new<'b>(arena: &'b MemArena, radii: Vec<f32>, colors: Vec<XYZ>) -> SphereLight<'b> {
let bbs: Vec<_> = radii.iter()
.map(|r| {
BBox {
min: Point::new(-*r, -*r, -*r),
max: Point::new(*r, *r, *r),
let bbs: Vec<_> = radii
.iter()
.map(
|r| {
BBox {
min: Point::new(-*r, -*r, -*r),
max: Point::new(*r, *r, *r),
}
}
})
)
.collect();
SphereLight {
radii: arena.copy_slice(&radii),
@ -39,14 +42,7 @@ impl<'a> SphereLight<'a> {
}
impl<'a> LightSource for SphereLight<'a> {
fn sample(&self,
space: &Matrix4x4,
arr: Point,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> (SpectralSample, Vector, f32) {
fn sample(&self, space: &Matrix4x4, arr: Point, u: f32, v: f32, wavelength: f32, time: f32) -> (SpectralSample, Vector, f32) {
// TODO: track fp error due to transforms
let arr = arr * *space;
let pos = Point::new(0.0, 0.0, 0.0);
@ -93,13 +89,14 @@ impl<'a> LightSource for SphereLight<'a> {
};
let sin_a = ((1.0 - (cos_a * cos_a)).max(0.0)).sqrt();
let phi = v as f64 * 2.0 * PI_64;
let sample = Vector::new((phi.cos() * sin_a * radius) as f32,
(phi.sin() * sin_a * radius) as f32,
(d - (cos_a * radius)) as f32);
let sample = Vector::new(
(phi.cos() * sin_a * radius) as f32,
(phi.sin() * sin_a * radius) as f32,
(d - (cos_a * radius)) as f32,
);
// Calculate the final values and return everything.
let shadow_vec = ((x * sample.x()) + (y * sample.y()) + (z * sample.z())) *
space.inverse();
let shadow_vec = ((x * sample.x()) + (y * sample.y()) + (z * sample.z())) * space.inverse();
let pdf = uniform_sample_cone_pdf(cos_theta_max);
let spectral_sample = (col * surface_area_inv as f32).to_spectral_sample(wavelength);
return (spectral_sample, shadow_vec, pdf as f32);
@ -112,15 +109,7 @@ impl<'a> LightSource for SphereLight<'a> {
}
}
fn sample_pdf(&self,
space: &Matrix4x4,
arr: Point,
sample_dir: Vector,
sample_u: f32,
sample_v: f32,
wavelength: f32,
time: f32)
-> f32 {
fn sample_pdf(&self, space: &Matrix4x4, arr: Point, sample_dir: Vector, sample_u: f32, sample_v: f32, wavelength: f32, time: f32) -> f32 {
// We're not using these, silence warnings
let _ = (sample_dir, sample_u, sample_v, wavelength);
@ -143,14 +132,7 @@ impl<'a> LightSource for SphereLight<'a> {
}
}
fn outgoing(&self,
space: &Matrix4x4,
dir: Vector,
u: f32,
v: f32,
wavelength: f32,
time: f32)
-> SpectralSample {
fn outgoing(&self, space: &Matrix4x4, dir: Vector, u: f32, v: f32, wavelength: f32, time: f32) -> SpectralSample {
// We're not using these, silence warnings
let _ = (space, dir, u, v);
@ -166,8 +148,9 @@ impl<'a> LightSource for SphereLight<'a> {
}
fn approximate_energy(&self) -> f32 {
let color: XYZ = self.colors.iter().fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) /
self.colors.len() as f32;
let color: XYZ = self.colors
.iter()
.fold(XYZ::new(0.0, 0.0, 0.0), |a, &b| a + b) / self.colors.len() as f32;
color.y
}
}

View File

@ -70,59 +70,86 @@ fn main() {
let mut t = Timer::new();
// Parse command line arguments.
let args =
App::new("Psychopath")
.version(VERSION)
.about("A slightly psychotic path tracer")
.arg(Arg::with_name("input")
let args = App::new("Psychopath")
.version(VERSION)
.about("A slightly psychotic path tracer")
.arg(
Arg::with_name("input")
.short("i")
.long("input")
.value_name("FILE")
.help("Input .psy file")
.takes_value(true)
.required_unless("dev"))
.arg(Arg::with_name("spp")
.required_unless("dev")
)
.arg(
Arg::with_name("spp")
.short("s")
.long("spp")
.value_name("N")
.help("Number of samples per pixel")
.takes_value(true)
.validator(|s| {
usize::from_str(&s).and(Ok(())).or(Err("must be an integer".to_string()))
}))
.arg(Arg::with_name("max_bucket_samples")
.validator(
|s| {
usize::from_str(&s)
.and(Ok(()))
.or(Err("must be an integer".to_string()))
}
)
)
.arg(
Arg::with_name("max_bucket_samples")
.short("b")
.long("spb")
.value_name("N")
.help("Target number of samples per bucket (determines bucket size)")
.takes_value(true)
.validator(|s| {
usize::from_str(&s).and(Ok(())).or(Err("must be an integer".to_string()))
}))
.arg(Arg::with_name("threads")
.validator(
|s| {
usize::from_str(&s)
.and(Ok(()))
.or(Err("must be an integer".to_string()))
}
)
)
.arg(
Arg::with_name("threads")
.short("t")
.long("threads")
.value_name("N")
.help("Number of threads to render with. Defaults to the number of logical \
cores on the system.")
.help(
"Number of threads to render with. Defaults to the number of logical \
cores on the system."
)
.takes_value(true)
.validator(|s| {
usize::from_str(&s).and(Ok(())).or(Err("must be an integer".to_string()))
}))
.arg(Arg::with_name("stats")
.validator(
|s| {
usize::from_str(&s)
.and(Ok(()))
.or(Err("must be an integer".to_string()))
}
)
)
.arg(
Arg::with_name("stats")
.long("stats")
.help("Print additional statistics about rendering"))
.arg(Arg::with_name("dev")
.help("Print additional statistics about rendering")
)
.arg(
Arg::with_name("dev")
.long("dev")
.help("Show useful dev/debug info."))
.get_matches();
.help("Show useful dev/debug info.")
)
.get_matches();
// Print some misc useful dev info.
if args.is_present("dev") {
println!("Ray size: {} bytes", mem::size_of::<Ray>());
println!("AccelRay size: {} bytes", mem::size_of::<AccelRay>());
println!("SurfaceIntersection size: {} bytes",
mem::size_of::<SurfaceIntersection>());
println!(
"SurfaceIntersection size: {} bytes",
mem::size_of::<SurfaceIntersection>()
);
println!("LightPath size: {} bytes", mem::size_of::<LightPath>());
println!("BBox size: {} bytes", mem::size_of::<BBox>());
println!("BVHNode size: {} bytes", mem::size_of::<BVHNode>());
@ -130,7 +157,9 @@ fn main() {
}
// Parse data tree of scene file
println!("Parsing scene file...");
println!(
"Parsing scene file...",
);
t.tick();
let mut psy_contents = String::new();
let dt = {
@ -150,18 +179,19 @@ fn main() {
println!("Building scene...");
let arena = MemArena::with_min_block_size((1 << 20) * 4);
let mut r = parse_scene(&arena, child).unwrap_or_else(|e| {
e.print(&psy_contents);
panic!("Parse error.");
});
let mut r = parse_scene(&arena, child).unwrap_or_else(
|e| {
e.print(&psy_contents);
panic!("Parse error.");
}
);
if let Some(spp) = args.value_of("spp") {
println!("\tOverriding scene spp: {}", spp);
r.spp = usize::from_str(&spp).unwrap();
}
let max_samples_per_bucket = if let Some(max_samples_per_bucket) =
args.value_of("max_bucket_samples") {
let max_samples_per_bucket = if let Some(max_samples_per_bucket) = args.value_of("max_bucket_samples") {
u32::from_str(&max_samples_per_bucket).unwrap()
} else {
4096
@ -182,16 +212,26 @@ fn main() {
let rtime = t.tick();
let ntime = rtime as f64 / rstats.total_time;
println!("\tRendered scene in {:.3}s", rtime);
println!("\t\tTrace: {:.3}s",
ntime * rstats.trace_time);
println!("\t\t\tTraversal: {:.3}s",
ntime * rstats.accel_traversal_time);
println!("\t\tInitial ray generation: {:.3}s",
ntime * rstats.initial_ray_generation_time);
println!("\t\tRay generation: {:.3}s",
ntime * rstats.ray_generation_time);
println!("\t\tSample writing: {:.3}s",
ntime * rstats.sample_writing_time);
println!(
"\t\tTrace: {:.3}s",
ntime * rstats.trace_time
);
println!(
"\t\t\tTraversal: {:.3}s",
ntime * rstats.accel_traversal_time
);
println!(
"\t\tInitial ray generation: {:.3}s",
ntime * rstats.initial_ray_generation_time
);
println!(
"\t\tRay generation: {:.3}s",
ntime * rstats.ray_generation_time
);
println!(
"\t\tSample writing: {:.3}s",
ntime * rstats.sample_writing_time
);
}
println!("Writing image to disk...");

View File

@ -29,9 +29,7 @@ pub fn fast_pow2(p: f32) -> f32 {
let w: i32 = clipp as i32;
let z: f32 = clipp - w as f32 + offset;
let i: u32 = ((1 << 23) as f32 *
(clipp + 121.2740575 + 27.7280233 / (4.84252568 - z) - 1.49012907 * z)) as
u32;
let i: u32 = ((1 << 23) as f32 * (clipp + 121.2740575 + 27.7280233 / (4.84252568 - z) - 1.49012907 * z)) as u32;
unsafe { transmute_copy::<u32, f32>(&i) }
}
@ -77,10 +75,72 @@ pub fn upper_power_of_two(mut v: u32) -> u32 {
/// Gets the log base 2 of the given integer
pub fn log2_64(value: u64) -> u64 {
const TAB64: [u64; 64] = [63, 0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51,
37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46,
52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5];
const TAB64: [u64; 64] = [
63,
0,
58,
1,
59,
47,
53,
2,
60,
39,
48,
27,
54,
33,
42,
3,
61,
51,
37,
40,
49,
18,
28,
20,
55,
30,
34,
11,
43,
14,
22,
4,
62,
57,
46,
52,
38,
26,
32,
41,
50,
36,
17,
19,
29,
10,
13,
21,
56,
45,
25,
31,
35,
16,
9,
12,
44,
24,
15,
8,
23,
7,
6,
5,
];
let value = value | value.wrapping_shr(1);
let value = value | value.wrapping_shr(2);
@ -89,8 +149,7 @@ pub fn log2_64(value: u64) -> u64 {
let value = value | value.wrapping_shr(16);
let value = value | value.wrapping_shr(32);
TAB64[((value.wrapping_sub(value.wrapping_shr(1)) as u64).wrapping_mul(0x07EDD5E59A4E28C2))
.wrapping_shr(58) as usize]
TAB64[((value.wrapping_sub(value.wrapping_shr(1)) as u64).wrapping_mul(0x07EDD5E59A4E28C2)).wrapping_shr(58) as usize]
}

View File

@ -35,12 +35,14 @@ impl<'a> DataTree<'a> {
remaining_text = skip_ws_and_comments(remaining_text);
if remaining_text.1.len() == 0 {
return Ok(DataTree::Internal {
type_name: "ROOT",
ident: None,
children: items,
byte_offset: 0,
});
return Ok(
DataTree::Internal {
type_name: "ROOT",
ident: None,
children: items,
byte_offset: 0,
}
);
} else {
// If the whole text wasn't parsed, something went wrong.
return Err(ParseError::Other((0, "Failed to parse the entire string.")));
@ -104,9 +106,7 @@ impl<'a> DataTree<'a> {
}
}
pub fn iter_internal_children_with_type(&'a self,
type_name: &'static str)
-> DataTreeFilterInternalIter<'a> {
pub fn iter_internal_children_with_type(&'a self, type_name: &'static str) -> DataTreeFilterInternalIter<'a> {
if let &DataTree::Internal { ref children, .. } = self {
DataTreeFilterInternalIter {
type_name: type_name,
@ -120,9 +120,7 @@ impl<'a> DataTree<'a> {
}
}
pub fn iter_leaf_children_with_type(&'a self,
type_name: &'static str)
-> DataTreeFilterLeafIter<'a> {
pub fn iter_leaf_children_with_type(&'a self, type_name: &'static str) -> DataTreeFilterLeafIter<'a> {
if let &DataTree::Internal { ref children, .. } = self {
DataTreeFilterLeafIter {
type_name: type_name,
@ -138,14 +136,23 @@ impl<'a> DataTree<'a> {
// For unit tests
fn internal_data_or_panic(&'a self) -> (&'a str, Option<&'a str>, &'a Vec<DataTree<'a>>) {
if let DataTree::Internal { type_name, ident, ref children, byte_offset: _ } = *self {
if let DataTree::Internal {
type_name,
ident,
ref children,
byte_offset: _,
} = *self {
(type_name, ident, children)
} else {
panic!("Expected DataTree::Internal, found DataTree::Leaf")
}
}
fn leaf_data_or_panic(&'a self) -> (&'a str, &'a str) {
if let DataTree::Leaf { type_name, contents, byte_offset: _ } = *self {
if let DataTree::Leaf {
type_name,
contents,
byte_offset: _,
} = *self {
(type_name, contents)
} else {
panic!("Expected DataTree::Leaf, found DataTree::Internal")
@ -194,7 +201,12 @@ impl<'a> Iterator for DataTreeFilterInternalIter<'a> {
fn next(&mut self) -> Option<(&'a str, Option<&'a str>, &'a Vec<DataTree<'a>>, usize)> {
loop {
match self.iter.next() {
Some(&DataTree::Internal { type_name, ident, ref children, byte_offset }) => {
Some(&DataTree::Internal {
type_name,
ident,
ref children,
byte_offset,
}) => {
if type_name == self.type_name {
return Some((type_name, ident, children, byte_offset));
} else {
@ -233,7 +245,11 @@ impl<'a> Iterator for DataTreeFilterLeafIter<'a> {
continue;
}
Some(&DataTree::Leaf { type_name, contents, byte_offset }) => {
Some(&DataTree::Leaf {
type_name,
contents,
byte_offset,
}) => {
if type_name == self.type_name {
return Some((type_name, contents, byte_offset));
} else {
@ -296,13 +312,17 @@ fn parse_node<'a>(source_text: (usize, &'a str)) -> ParseResult<'a> {
children.push(node);
}
if let (Token::CloseInner, text4) = next_token(text_remaining) {
return Ok(Some((DataTree::Internal {
type_name: type_name,
ident: Some(n),
children: children,
byte_offset: text1.0,
},
text4)));
return Ok(
Some(
(DataTree::Internal {
type_name: type_name,
ident: Some(n),
children: children,
byte_offset: text1.0,
},
text4)
)
);
} else {
return Err(ParseError::MissingCloseInternal(text_remaining.0));
}
@ -321,13 +341,17 @@ fn parse_node<'a>(source_text: (usize, &'a str)) -> ParseResult<'a> {
}
if let (Token::CloseInner, text3) = next_token(text_remaining) {
return Ok(Some((DataTree::Internal {
type_name: type_name,
ident: None,
children: children,
byte_offset: text1.0,
},
text3)));
return Ok(
Some(
(DataTree::Internal {
type_name: type_name,
ident: None,
children: children,
byte_offset: text1.0,
},
text3)
)
);
} else {
return Err(ParseError::MissingCloseInternal(text_remaining.0));
}
@ -337,12 +361,16 @@ fn parse_node<'a>(source_text: (usize, &'a str)) -> ParseResult<'a> {
(Token::OpenLeaf, text2) => {
let (contents, text3) = parse_leaf_content(text2);
if let (Token::CloseLeaf, text4) = next_token(text3) {
return Ok(Some((DataTree::Leaf {
type_name: type_name,
contents: contents,
byte_offset: text1.0,
},
text4)));
return Ok(
Some(
(DataTree::Leaf {
type_name: type_name,
contents: contents,
byte_offset: text1.0,
},
text4)
)
);
} else {
return Err(ParseError::MissingCloseLeaf(text3.0));
}
@ -586,8 +614,10 @@ mod tests {
fn tokenize_5() {
let input = (0, " $hi\\ t\\#he\\[re ");
assert_eq!(next_token(input),
(Token::Ident("$hi\\ t\\#he\\[re"), (15, " ")));
assert_eq!(
next_token(input),
(Token::Ident("$hi\\ t\\#he\\[re"), (15, " "))
);
}
#[test]
@ -618,14 +648,22 @@ mod tests {
let (token7, input8) = next_token(input7);
let (token8, input9) = next_token(input8);
assert_eq!((token1, input2),
(Token::TypeName("Thing"), (5, " $yar { # A comment\n\tThing2 []\n}")));
assert_eq!((token2, input3),
(Token::Ident("$yar"), (10, " { # A comment\n\tThing2 []\n}")));
assert_eq!((token3, input4),
(Token::OpenInner, (12, " # A comment\n\tThing2 []\n}")));
assert_eq!((token4, input5),
(Token::TypeName("Thing2"), (32, " []\n}")));
assert_eq!(
(token1, input2),
(Token::TypeName("Thing"), (5, " $yar { # A comment\n\tThing2 []\n}"))
);
assert_eq!(
(token2, input3),
(Token::Ident("$yar"), (10, " { # A comment\n\tThing2 []\n}"))
);
assert_eq!(
(token3, input4),
(Token::OpenInner, (12, " # A comment\n\tThing2 []\n}"))
);
assert_eq!(
(token4, input5),
(Token::TypeName("Thing2"), (32, " []\n}"))
);
assert_eq!((token5, input6), (Token::OpenLeaf, (34, "]\n}")));
assert_eq!((token6, input7), (Token::CloseLeaf, (35, "\n}")));
assert_eq!((token7, input8), (Token::CloseInner, (37, "")));
@ -655,14 +693,16 @@ mod tests {
#[test]
fn iter_1() {
let dt = DataTree::from_str(r#"
let dt = DataTree::from_str(
r#"
A {}
B {}
A []
A {}
B {}
"#)
.unwrap();
"#
)
.unwrap();
let i = dt.iter_children_with_type("A");
assert_eq!(i.count(), 3);
@ -670,14 +710,16 @@ mod tests {
#[test]
fn iter_2() {
let dt = DataTree::from_str(r#"
let dt = DataTree::from_str(
r#"
A {}
B {}
A []
A {}
B {}
"#)
.unwrap();
"#
)
.unwrap();
let i = dt.iter_internal_children_with_type("A");
assert_eq!(i.count(), 2);
@ -685,14 +727,16 @@ mod tests {
#[test]
fn iter_3() {
let dt = DataTree::from_str(r#"
let dt = DataTree::from_str(
r#"
A []
B {}
A {}
A []
B {}
"#)
.unwrap();
"#
)
.unwrap();
let i = dt.iter_leaf_children_with_type("A");
assert_eq!(i.count(), 2);

View File

@ -40,9 +40,11 @@ impl PsyParseError {
match self {
&PsyParseError::UnknownError(offset) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: Unknown parse error. If you get this message, please report \
println!(
"Line {}: Unknown parse error. If you get this message, please report \
it to the developers so they can improve the error messages.",
line);
line
);
}
&PsyParseError::UnknownVariant(offset, error) => {
@ -89,65 +91,87 @@ fn line_count_to_byte_offset(text: &str, offset: usize) -> usize {
/// Takes in a DataTree representing a Scene node and returns
pub fn parse_scene<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<Renderer<'a>, PsyParseError> {
pub fn parse_scene<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<Renderer<'a>, PsyParseError> {
// Verify we have the right number of each section
if tree.iter_children_with_type("Output").count() != 1 {
let count = tree.iter_children_with_type("Output").count();
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"Scene should have precisely one Output \
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Output \
section.",
count));
count,
)
);
}
if tree.iter_children_with_type("RenderSettings").count() != 1 {
let count = tree.iter_children_with_type("RenderSettings").count();
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"Scene should have precisely one \
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one \
RenderSettings section.",
count));
count,
)
);
}
if tree.iter_children_with_type("Camera").count() != 1 {
let count = tree.iter_children_with_type("Camera").count();
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"Scene should have precisely one Camera \
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Camera \
section.",
count));
count,
)
);
}
if tree.iter_children_with_type("World").count() != 1 {
let count = tree.iter_children_with_type("World").count();
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"Scene should have precisely one World section.",
count));
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one World section.",
count,
)
);
}
if tree.iter_children_with_type("Assembly").count() != 1 {
let count = tree.iter_children_with_type("Assembly").count();
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"Scene should have precisely one Root Assembly \
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Root Assembly \
section.",
count));
count,
)
);
}
// Parse output info
let output_info = parse_output_info(tree.iter_children_with_type("Output")
.nth(0)
.unwrap())?;
let output_info = parse_output_info(tree.iter_children_with_type("Output").nth(0).unwrap())?;
// Parse render settings
let render_settings = parse_render_settings(tree.iter_children_with_type("RenderSettings")
.nth(0)
.unwrap())?;
let render_settings = parse_render_settings(
tree.iter_children_with_type("RenderSettings")
.nth(0)
.unwrap()
)?;
// Parse camera
let camera = parse_camera(arena,
tree.iter_children_with_type("Camera").nth(0).unwrap())?;
let camera = parse_camera(
arena,
tree.iter_children_with_type("Camera").nth(0).unwrap(),
)?;
// Parse world
let world = parse_world(arena, tree.iter_children_with_type("World").nth(0).unwrap())?;
// Parse root scene assembly
let assembly = parse_assembly(arena,
tree.iter_children_with_type("Assembly").nth(0).unwrap())?;
let assembly = parse_assembly(
arena,
tree.iter_children_with_type("Assembly").nth(0).unwrap(),
)?;
// Put scene together
let scene_name = if let &DataTree::Internal { ident, .. } = tree {
@ -188,18 +212,30 @@ fn parse_output_info(tree: &DataTree) -> Result<String, PsyParseError> {
for child in children {
match child {
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Path" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Path" => {
// Trim and validate
let tc = contents.trim();
if tc.chars().count() < 2 {
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"File path format is \
incorrect."));
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"File path format is \
incorrect.",
)
);
}
if tc.chars().nth(0).unwrap() != '"' || tc.chars().last().unwrap() != '"' {
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"File paths must be \
surrounded by quotes."));
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"File paths must be \
surrounded by quotes.",
)
);
}
let len = tc.len();
let tc = &tc[1..len - 1];
@ -217,13 +253,16 @@ fn parse_output_info(tree: &DataTree) -> Result<String, PsyParseError> {
if found_path {
return Ok((path));
} else {
return Err(PsyParseError::MissingNode(tree.byte_offset(),
"Output section must contain a Path."));
return Err(PsyParseError::MissingNode(tree.byte_offset(), "Output section must contain a Path."));
}
} else {
return Err(PsyParseError::ExpectedInternalNode(tree.byte_offset(),
"Output section should be an internal \
node, containing at least a Path."));
return Err(
PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"Output section should be an internal \
node, containing at least a Path.",
)
);
};
}
@ -241,45 +280,66 @@ fn parse_render_settings(tree: &DataTree) -> Result<((u32, u32), u32, u32), PsyP
for child in children {
match child {
// Resolution
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"Resolution" => {
if let IResult::Done(_, (w, h)) = closure!(terminated!(tuple!(ws_u32, ws_u32),
nom::eof))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Resolution" => {
if let IResult::Done(_, (w, h)) = closure!(terminated!(tuple!(ws_u32, ws_u32), nom::eof))(contents.as_bytes()) {
found_res = true;
res = (w, h);
} else {
// Found Resolution, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"Resolution should be specified with two \
integers in the form '[width height]'."));
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"Resolution should be specified with two \
integers in the form '[width height]'.",
)
);
}
}
// SamplesPerPixel
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"SamplesPerPixel" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "SamplesPerPixel" => {
if let IResult::Done(_, n) = ws_u32(contents.as_bytes()) {
found_spp = true;
spp = n;
} else {
// Found SamplesPerPixel, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"SamplesPerPixel should be \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"SamplesPerPixel should be \
an integer specified in \
the form '[samples]'."));
the form '[samples]'.",
)
);
}
}
// Seed
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Seed" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Seed" => {
if let IResult::Done(_, n) = ws_u32(contents.as_bytes()) {
seed = n;
} else {
// Found Seed, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"Seed should be an integer \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"Seed should be an integer \
specified in the form \
'[samples]'."));
'[samples]'.",
)
);
}
}
@ -290,15 +350,23 @@ fn parse_render_settings(tree: &DataTree) -> Result<((u32, u32), u32, u32), PsyP
if found_res && found_spp {
return Ok((res, spp, seed));
} else {
return Err(PsyParseError::MissingNode(tree.byte_offset(),
"RenderSettings must have both Resolution and \
SamplesPerPixel specified."));
return Err(
PsyParseError::MissingNode(
tree.byte_offset(),
"RenderSettings must have both Resolution and \
SamplesPerPixel specified.",
)
);
}
} else {
return Err(PsyParseError::ExpectedInternalNode(tree.byte_offset(),
"RenderSettings section should be an \
return Err(
PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"RenderSettings section should be an \
internal node, containing at least \
Resolution and SamplesPerPixel."));
Resolution and SamplesPerPixel.",
)
);
};
}
@ -316,49 +384,74 @@ fn parse_camera<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<Camera<'a
for child in children.iter() {
match child {
// Fov
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Fov" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Fov" => {
if let IResult::Done(_, fov) = ws_f32(contents.as_bytes()) {
fovs.push(fov * (3.1415926536 / 180.0));
} else {
// Found Fov, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"Fov should be a decimal \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"Fov should be a decimal \
number specified in the \
form '[fov]'."));
form '[fov]'.",
)
);
}
}
// FocalDistance
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"FocalDistance" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "FocalDistance" => {
if let IResult::Done(_, fd) = ws_f32(contents.as_bytes()) {
focus_distances.push(fd);
} else {
// Found FocalDistance, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"FocalDistance should be a \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"FocalDistance should be a \
decimal number specified \
in the form '[fov]'."));
in the form '[fov]'.",
)
);
}
}
// ApertureRadius
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"ApertureRadius" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "ApertureRadius" => {
if let IResult::Done(_, ar) = ws_f32(contents.as_bytes()) {
aperture_radii.push(ar);
} else {
// Found ApertureRadius, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"ApertureRadius should be a \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"ApertureRadius should be a \
decimal number specified \
in the form '[fov]'."));
in the form '[fov]'.",
)
);
}
}
// Transform
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"Transform" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Transform" => {
if let Ok(mat) = parse_matrix(contents) {
mats.push(mat);
} else {
@ -373,10 +466,14 @@ fn parse_camera<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<Camera<'a
return Ok(Camera::new(arena, mats, fovs, aperture_radii, focus_distances));
} else {
return Err(PsyParseError::ExpectedInternalNode(tree.byte_offset(),
"Camera section should be an internal \
return Err(
PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"Camera section should be an internal \
node, containing at least Fov and \
Transform."));
Transform.",
)
);
}
}
@ -391,59 +488,81 @@ fn parse_world<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<World<'a>,
// Parse background shader
let bgs = {
if tree.iter_children_with_type("BackgroundShader").count() != 1 {
return Err(PsyParseError::WrongNodeCount(tree.byte_offset(),
"World should have precisely one BackgroundShader section.",
tree.iter_children_with_type("BackgroundShader").count()));
return Err(
PsyParseError::WrongNodeCount(
tree.byte_offset(),
"World should have precisely one BackgroundShader section.",
tree.iter_children_with_type("BackgroundShader").count(),
)
);
}
tree.iter_children_with_type("BackgroundShader").nth(0).unwrap()
tree.iter_children_with_type("BackgroundShader")
.nth(0)
.unwrap()
};
let bgs_type = {
if bgs.iter_children_with_type("Type").count() != 1 {
return Err(PsyParseError::WrongNodeCount(bgs.byte_offset(),
"BackgroundShader should have \
return Err(
PsyParseError::WrongNodeCount(
bgs.byte_offset(),
"BackgroundShader should have \
precisely one Type specified.",
bgs.iter_children_with_type("Type")
.count()));
bgs.iter_children_with_type("Type").count(),
)
);
}
if let &DataTree::Leaf { contents, .. } =
bgs.iter_children_with_type("Type")
.nth(0)
.unwrap() {
if let &DataTree::Leaf { contents, .. } = bgs.iter_children_with_type("Type").nth(0).unwrap() {
contents.trim()
} else {
return Err(PsyParseError::ExpectedLeafNode(bgs.byte_offset(),
"BackgroundShader's Type should be a \
leaf node."));
return Err(
PsyParseError::ExpectedLeafNode(
bgs.byte_offset(),
"BackgroundShader's Type should be a \
leaf node.",
)
);
}
};
match bgs_type {
"Color" => {
if let Some(&DataTree::Leaf { contents, byte_offset, .. }) =
bgs.iter_children_with_type("Color")
.nth(0) {
if let IResult::Done(_, color) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.trim()
.as_bytes()) {
if let Some(&DataTree::Leaf {
contents,
byte_offset,
..
}) = bgs.iter_children_with_type("Color").nth(0) {
if let IResult::Done(_, color) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.trim().as_bytes()) {
// TODO: proper color space management, not just assuming
// rec.709.
background_color = XYZ::from_tuple(rec709e_to_xyz(color));
} else {
return Err(PsyParseError::IncorrectLeafData(byte_offset,
"Color should be specified \
return Err(
PsyParseError::IncorrectLeafData(
byte_offset,
"Color should be specified \
with three decimal numbers \
in the form '[R G B]'."));
in the form '[R G B]'.",
)
);
}
} else {
return Err(PsyParseError::MissingNode(bgs.byte_offset(),
"BackgroundShader's Type is Color, \
but no Color is specified."));
return Err(
PsyParseError::MissingNode(
bgs.byte_offset(),
"BackgroundShader's Type is Color, \
but no Color is specified.",
)
);
}
}
_ => {
return Err(PsyParseError::UnknownVariant(bgs.byte_offset(),
"The specified BackgroundShader Type \
isn't a recognized type."))
return Err(
PsyParseError::UnknownVariant(
bgs.byte_offset(),
"The specified BackgroundShader Type \
isn't a recognized type.",
)
)
}
}
@ -459,15 +578,21 @@ fn parse_world<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<World<'a>,
}
// Build and return the world
return Ok(World {
background_color: background_color,
lights: arena.copy_slice(&lights),
});
return Ok(
World {
background_color: background_color,
lights: arena.copy_slice(&lights),
}
);
} else {
return Err(PsyParseError::ExpectedInternalNode(tree.byte_offset(),
"World section should be an internal \
return Err(
PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"World section should be an internal \
node, containing at least a \
BackgroundShader."));
BackgroundShader.",
)
);
}
}
@ -476,46 +601,58 @@ fn parse_world<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<World<'a>,
pub fn parse_matrix(contents: &str) -> Result<Matrix4x4, PsyParseError> {
if let IResult::Done(_, ns) =
closure!(terminated!(tuple!(ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32),
nom::eof))(contents.as_bytes()) {
return Ok(Matrix4x4::new_from_values(ns.0,
ns.4,
ns.8,
ns.12,
ns.1,
ns.5,
ns.9,
ns.13,
ns.2,
ns.6,
ns.10,
ns.14,
ns.3,
ns.7,
ns.11,
ns.15));
closure!(
terminated!(
tuple!(
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32,
ws_f32
),
nom::eof
)
)(contents.as_bytes()) {
return Ok(
Matrix4x4::new_from_values(
ns.0,
ns.4,
ns.8,
ns.12,
ns.1,
ns.5,
ns.9,
ns.13,
ns.2,
ns.6,
ns.10,
ns.14,
ns.3,
ns.7,
ns.11,
ns.15,
)
);
} else {
return Err(PsyParseError::UnknownError(0));
}
}
pub fn make_transform_format_error(byte_offset: usize) -> PsyParseError {
return PsyParseError::IncorrectLeafData(byte_offset,
"Transform should be sixteen integers specified in \
the form '[# # # # # # # # # # # # # # # #]'.");
return PsyParseError::IncorrectLeafData(
byte_offset,
"Transform should be sixteen integers specified in \
the form '[# # # # # # # # # # # # # # # #]'.",
);
}

View File

@ -12,9 +12,7 @@ use super::psy_mesh_surface::parse_mesh_surface;
use super::psy::{parse_matrix, PsyParseError};
pub fn parse_assembly<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<Assembly<'a>, PsyParseError> {
pub fn parse_assembly<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<Assembly<'a>, PsyParseError> {
let mut builder = AssemblyBuilder::new(arena);
if tree.is_internal() {
@ -54,38 +52,43 @@ pub fn parse_assembly<'a>(arena: &'a MemArena,
if builder.name_exists(name) {
builder.add_instance(name, Some(&xforms));
} else {
return Err(PsyParseError::InstancedMissingData(
child.iter_leaf_children_with_type("Data").nth(0).unwrap().2,
"Attempted to add \
return Err(
PsyParseError::InstancedMissingData(
child.iter_leaf_children_with_type("Data").nth(0).unwrap().2,
"Attempted to add \
instance for data with \
a name that doesn't \
exist.",
name.to_string()));
name.to_string(),
)
);
}
}
// MeshSurface
"MeshSurface" => {
if let &DataTree::Internal { ident: Some(ident), .. } = child {
builder.add_object(ident,
Object::Surface(arena.alloc(
parse_mesh_surface(arena, &child)?
)));
builder.add_object(
ident,
Object::Surface(arena.alloc(parse_mesh_surface(arena, &child)?)),
);
} else {
// TODO: error condition of some kind, because no ident
panic!("MeshSurface encountered that was a leaf, but MeshSurfaces cannot \
panic!(
"MeshSurface encountered that was a leaf, but MeshSurfaces cannot \
be a leaf: {}",
child.byte_offset());
child.byte_offset()
);
}
}
// Sphere Light
"SphereLight" => {
if let &DataTree::Internal { ident: Some(ident), .. } = child {
builder.add_object(ident,
Object::Light(arena.alloc(
parse_sphere_light(arena, &child)?
)));
builder.add_object(
ident,
Object::Light(arena.alloc(parse_sphere_light(arena, &child)?)),
);
} else {
// No ident
return Err(PsyParseError::UnknownError(child.byte_offset()));
@ -95,10 +98,10 @@ pub fn parse_assembly<'a>(arena: &'a MemArena,
// Rectangle Light
"RectangleLight" => {
if let &DataTree::Internal { ident: Some(ident), .. } = child {
builder.add_object(ident,
Object::Light(arena.alloc(
parse_rectangle_light(arena, &child)?
)));
builder.add_object(
ident,
Object::Light(arena.alloc(parse_rectangle_light(arena, &child)?)),
);
} else {
// No ident
return Err(PsyParseError::UnknownError(child.byte_offset()));

View File

@ -15,9 +15,7 @@ use super::DataTree;
use super::psy::PsyParseError;
pub fn parse_distant_disk_light<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<DistantDiskLight<'a>, PsyParseError> {
pub fn parse_distant_disk_light<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<DistantDiskLight<'a>, PsyParseError> {
if let &DataTree::Internal { ref children, .. } = tree {
let mut radii = Vec::new();
let mut directions = Vec::new();
@ -27,7 +25,11 @@ pub fn parse_distant_disk_light<'a>(arena: &'a MemArena,
for child in children.iter() {
match child {
// Radius
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Radius" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Radius" => {
if let IResult::Done(_, radius) = ws_f32(contents.as_bytes()) {
radii.push(radius);
} else {
@ -37,10 +39,12 @@ pub fn parse_distant_disk_light<'a>(arena: &'a MemArena,
}
// Direction
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"Direction" => {
if let IResult::Done(_, direction) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Direction" => {
if let IResult::Done(_, direction) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
directions.push(Vector::new(direction.0, direction.1, direction.2));
} else {
// Found direction, but its contents is not in the right format
@ -49,9 +53,12 @@ pub fn parse_distant_disk_light<'a>(arena: &'a MemArena,
}
// Color
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Color" => {
if let IResult::Done(_, color) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Color" => {
if let IResult::Done(_, color) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
// TODO: handle color space conversions properly.
// Probably will need a special color type with its
// own parser...?
@ -73,9 +80,7 @@ pub fn parse_distant_disk_light<'a>(arena: &'a MemArena,
}
pub fn parse_sphere_light<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<SphereLight<'a>, PsyParseError> {
pub fn parse_sphere_light<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<SphereLight<'a>, PsyParseError> {
if let &DataTree::Internal { ref children, .. } = tree {
let mut radii = Vec::new();
let mut colors = Vec::new();
@ -84,7 +89,11 @@ pub fn parse_sphere_light<'a>(arena: &'a MemArena,
for child in children.iter() {
match child {
// Radius
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Radius" => {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Radius" => {
if let IResult::Done(_, radius) = ws_f32(contents.as_bytes()) {
radii.push(radius);
} else {
@ -94,9 +103,12 @@ pub fn parse_sphere_light<'a>(arena: &'a MemArena,
}
// Color
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Color" => {
if let IResult::Done(_, color) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Color" => {
if let IResult::Done(_, color) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
// TODO: handle color space conversions properly.
// Probably will need a special color type with its
// own parser...?
@ -117,9 +129,7 @@ pub fn parse_sphere_light<'a>(arena: &'a MemArena,
}
}
pub fn parse_rectangle_light<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<RectangleLight<'a>, PsyParseError> {
pub fn parse_rectangle_light<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<RectangleLight<'a>, PsyParseError> {
if let &DataTree::Internal { ref children, .. } = tree {
let mut dimensions = Vec::new();
let mut colors = Vec::new();
@ -128,10 +138,12 @@ pub fn parse_rectangle_light<'a>(arena: &'a MemArena,
for child in children.iter() {
match child {
// Dimensions
&DataTree::Leaf { type_name, contents, byte_offset } if type_name ==
"Dimensions" => {
if let IResult::Done(_, radius) =
closure!(tuple!(ws_f32, ws_f32))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Dimensions" => {
if let IResult::Done(_, radius) = closure!(tuple!(ws_f32, ws_f32))(contents.as_bytes()) {
dimensions.push(radius);
} else {
// Found dimensions, but its contents is not in the right format
@ -140,9 +152,12 @@ pub fn parse_rectangle_light<'a>(arena: &'a MemArena,
}
// Color
&DataTree::Leaf { type_name, contents, byte_offset } if type_name == "Color" => {
if let IResult::Done(_, color) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
&DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Color" => {
if let IResult::Done(_, color) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(contents.as_bytes()) {
// TODO: handle color space conversions properly.
// Probably will need a special color type with its
// own parser...?

View File

@ -21,9 +21,7 @@ use super::psy::PsyParseError;
// accel: BVH,
// }
pub fn parse_mesh_surface<'a>(arena: &'a MemArena,
tree: &'a DataTree)
-> Result<TriangleMesh<'a>, PsyParseError> {
pub fn parse_mesh_surface<'a>(arena: &'a MemArena, tree: &'a DataTree) -> Result<TriangleMesh<'a>, PsyParseError> {
let mut verts = Vec::new();
let mut face_vert_counts = Vec::new();
let mut face_vert_indices = Vec::new();
@ -39,8 +37,7 @@ pub fn parse_mesh_surface<'a>(arena: &'a MemArena,
// Collect verts for this time sample
let mut vert_count = 0;
while let IResult::Done(remaining, vert) =
closure!(tuple!(ws_f32, ws_f32, ws_f32))(raw_text) {
while let IResult::Done(remaining, vert) = closure!(tuple!(ws_f32, ws_f32, ws_f32))(raw_text) {
raw_text = remaining;
verts.push(Point::new(vert.0, vert.1, vert.2));
@ -91,9 +88,7 @@ pub fn parse_mesh_surface<'a>(arena: &'a MemArena,
// Store all the time samples of each triangle contiguously
for time_sample in 0..time_samples {
let start_vi = vert_count * time_sample;
triangles.push((verts[start_vi + face_vert_indices[v1]],
verts[start_vi + face_vert_indices[v1 + vi + 1]],
verts[start_vi + face_vert_indices[v1 + vi + 2]]));
triangles.push((verts[start_vi + face_vert_indices[v1]], verts[start_vi + face_vert_indices[v1 + vi + 1]], verts[start_vi + face_vert_indices[v1 + vi + 2]]));
}
}
} else {

View File

@ -97,196 +97,199 @@ impl<'a> Renderer<'a> {
let pixrenref = &pixels_rendered;
// Render
tpool.scoped(|scope| {
// Spawn worker tasks
for _ in 0..thread_count {
let jq = &job_queue;
let ajq = &all_jobs_queued;
let img = &image;
let cstats = &collective_stats;
scope.execute(move || {
let mut stats = RenderStats::new();
let mut timer = Timer::new();
let mut total_timer = Timer::new();
tpool.scoped(
|scope| {
// Spawn worker tasks
for _ in 0..thread_count {
let jq = &job_queue;
let ajq = &all_jobs_queued;
let img = &image;
let cstats = &collective_stats;
scope.execute(
move || {
let mut stats = RenderStats::new();
let mut timer = Timer::new();
let mut total_timer = Timer::new();
let mut paths = Vec::new();
let mut rays = Vec::new();
let mut tracer = Tracer::from_assembly(&self.scene.root);
let mut xform_stack = TransformStack::new();
let mut paths = Vec::new();
let mut rays = Vec::new();
let mut tracer = Tracer::from_assembly(&self.scene.root);
let mut xform_stack = TransformStack::new();
'render_loop: loop {
paths.clear();
rays.clear();
'render_loop: loop {
paths.clear();
rays.clear();
// Get bucket, or exit if no more jobs left
let bucket: BucketJob;
loop {
if let Some(b) = jq.try_pop() {
bucket = b;
break;
} else {
if *ajq.read().unwrap() == true {
break 'render_loop;
// Get bucket, or exit if no more jobs left
let bucket: BucketJob;
loop {
if let Some(b) = jq.try_pop() {
bucket = b;
break;
} else {
if *ajq.read().unwrap() == true {
break 'render_loop;
}
}
}
timer.tick();
// Generate light paths and initial rays
for y in bucket.y..(bucket.y + bucket.h) {
for x in bucket.x..(bucket.x + bucket.w) {
let offset = hash_u32(((x as u32) << 16) ^ (y as u32), self.seed);
for si in 0..self.spp {
// Calculate image plane x and y coordinates
let (img_x, img_y) = {
let filter_x = fast_logit(halton::sample(4, offset + si as u32), 1.5) + 0.5;
let filter_y = fast_logit(halton::sample(5, offset + si as u32), 1.5) + 0.5;
let samp_x = (filter_x + x as f32) * cmpx;
let samp_y = (filter_y + y as f32) * cmpy;
((samp_x - 0.5) * x_extent, (0.5 - samp_y) * y_extent)
};
// Create the light path and initial ray for this sample
let (path, ray) = LightPath::new(
&self.scene,
(x, y),
(img_x, img_y),
(halton::sample(0, offset + si as u32), halton::sample(1, offset + si as u32)),
halton::sample(2, offset + si as u32),
map_0_1_to_wavelength(halton::sample(3, offset + si as u32)),
offset + si as u32,
);
paths.push(path);
rays.push(ray);
}
}
}
stats.initial_ray_generation_time += timer.tick() as f64;
// Trace the paths!
let mut pi = paths.len();
while pi > 0 {
// Test rays against scene
let isects = tracer.trace(&rays);
stats.trace_time += timer.tick() as f64;
// Determine next rays to shoot based on result
pi = partition_pair(
&mut paths[..pi],
&mut rays[..pi],
|i, path, ray| path.next(&mut xform_stack, &self.scene, &isects[i], &mut *ray),
);
stats.ray_generation_time += timer.tick() as f64;
}
// Calculate color based on ray hits and save to image
{
let min = (bucket.x, bucket.y);
let max = (bucket.x + bucket.w, bucket.y + bucket.h);
let mut img_bucket = img.get_bucket(min, max);
for path in paths.iter() {
let path_col = SpectralSample::from_parts(path.color, path.wavelength);
let mut col = img_bucket.get(path.pixel_co.0, path.pixel_co.1);
col += XYZ::from_spectral_sample(&path_col) / self.spp as f32;
img_bucket.set(path.pixel_co.0, path.pixel_co.1, col);
}
stats.sample_writing_time += timer.tick() as f64;
}
// Print render progress
{
let guard = pixrenref.lock().unwrap();
let mut pr = (*guard).get();
let percentage_old = pr as f64 / total_pixels as f64 * 100.0;
pr += bucket.w as usize * bucket.h as usize;
(*guard).set(pr);
let percentage_new = pr as f64 / total_pixels as f64 * 100.0;
let old_string = format!("{:.2}%", percentage_old);
let new_string = format!("{:.2}%", percentage_new);
if new_string != old_string {
print!("\r{}", new_string);
let _ = io::stdout().flush();
}
}
}
}
timer.tick();
// Generate light paths and initial rays
for y in bucket.y..(bucket.y + bucket.h) {
for x in bucket.x..(bucket.x + bucket.w) {
let offset = hash_u32(((x as u32) << 16) ^ (y as u32), self.seed);
for si in 0..self.spp {
// Calculate image plane x and y coordinates
let (img_x, img_y) = {
let filter_x =
fast_logit(halton::sample(4, offset + si as u32), 1.5) +
0.5;
let filter_y =
fast_logit(halton::sample(5, offset + si as u32), 1.5) +
0.5;
let samp_x = (filter_x + x as f32) * cmpx;
let samp_y = (filter_y + y as f32) * cmpy;
((samp_x - 0.5) * x_extent, (0.5 - samp_y) * y_extent)
};
// Create the light path and initial ray for this sample
let (path, ray) =
LightPath::new(&self.scene,
(x, y),
(img_x, img_y),
(halton::sample(0, offset + si as u32),
halton::sample(1, offset + si as u32)),
halton::sample(2, offset + si as u32),
map_0_1_to_wavelength(halton::sample(3,
offset +
si as
u32)),
offset + si as u32);
paths.push(path);
rays.push(ray);
stats.total_time += total_timer.tick() as f64;
ACCEL_TRAV_TIME.with(
|att| {
stats.accel_traversal_time = att.get();
att.set(0.0);
}
}
);
// Collect stats
cstats.write().unwrap().collect(stats);
}
stats.initial_ray_generation_time += timer.tick() as f64;
// Trace the paths!
let mut pi = paths.len();
while pi > 0 {
// Test rays against scene
let isects = tracer.trace(&rays);
stats.trace_time += timer.tick() as f64;
// Determine next rays to shoot based on result
pi =
partition_pair(&mut paths[..pi], &mut rays[..pi], |i, path, ray| {
path.next(&mut xform_stack, &self.scene, &isects[i], &mut *ray)
});
stats.ray_generation_time += timer.tick() as f64;
}
// Calculate color based on ray hits and save to image
{
let min = (bucket.x, bucket.y);
let max = (bucket.x + bucket.w, bucket.y + bucket.h);
let mut img_bucket = img.get_bucket(min, max);
for path in paths.iter() {
let path_col = SpectralSample::from_parts(path.color,
path.wavelength);
let mut col = img_bucket.get(path.pixel_co.0, path.pixel_co.1);
col += XYZ::from_spectral_sample(&path_col) / self.spp as f32;
img_bucket.set(path.pixel_co.0, path.pixel_co.1, col);
}
stats.sample_writing_time += timer.tick() as f64;
}
// Print render progress
{
let guard = pixrenref.lock().unwrap();
let mut pr = (*guard).get();
let percentage_old = pr as f64 / total_pixels as f64 * 100.0;
pr += bucket.w as usize * bucket.h as usize;
(*guard).set(pr);
let percentage_new = pr as f64 / total_pixels as f64 * 100.0;
let old_string = format!("{:.2}%", percentage_old);
let new_string = format!("{:.2}%", percentage_new);
if new_string != old_string {
print!("\r{}", new_string);
let _ = io::stdout().flush();
}
}
}
stats.total_time += total_timer.tick() as f64;
ACCEL_TRAV_TIME.with(|att| {
stats.accel_traversal_time = att.get();
att.set(0.0);
});
// Collect stats
cstats.write().unwrap().collect(stats);
});
}
// Print initial 0.00% progress
print!("0.00%");
let _ = io::stdout().flush();
// Determine bucket size based on the per-thread maximum number of samples to
// calculate at a time.
let (bucket_w, bucket_h) = {
let target_pixels_per_bucket = max_samples_per_bucket as f64 / self.spp as f64;
let target_bucket_dim = if target_pixels_per_bucket.sqrt() < 1.0 {
1usize
} else {
target_pixels_per_bucket.sqrt() as usize
};
(target_bucket_dim, target_bucket_dim)
};
// Populate job queue
let bucket_n = {
let bucket_count_x = ((img_width / bucket_w) + 1) as u32;
let bucket_count_y = ((img_height / bucket_h) + 1) as u32;
let larger = cmp::max(bucket_count_x, bucket_count_y);
let pow2 = upper_power_of_two(larger);
pow2 * pow2
};
for hilbert_d in 0..bucket_n {
let (bx, by) = hilbert::d2xy(hilbert_d);
let x = bx as usize * bucket_w;
let y = by as usize * bucket_h;
let w = if img_width >= x {
min(bucket_w, img_width - x)
} else {
bucket_w
};
let h = if img_height >= y {
min(bucket_h, img_height - y)
} else {
bucket_h
};
if x < img_width && y < img_height && w > 0 && h > 0 {
job_queue.push(BucketJob {
x: x as u32,
y: y as u32,
w: w as u32,
h: h as u32,
});
);
}
}
// Mark done queuing jobs
*all_jobs_queued.write().unwrap() = true;
});
// Print initial 0.00% progress
print!("0.00%");
let _ = io::stdout().flush();
// Determine bucket size based on the per-thread maximum number of samples to
// calculate at a time.
let (bucket_w, bucket_h) = {
let target_pixels_per_bucket = max_samples_per_bucket as f64 / self.spp as f64;
let target_bucket_dim = if target_pixels_per_bucket.sqrt() < 1.0 {
1usize
} else {
target_pixels_per_bucket.sqrt() as usize
};
(target_bucket_dim, target_bucket_dim)
};
// Populate job queue
let bucket_n = {
let bucket_count_x = ((img_width / bucket_w) + 1) as u32;
let bucket_count_y = ((img_height / bucket_h) + 1) as u32;
let larger = cmp::max(bucket_count_x, bucket_count_y);
let pow2 = upper_power_of_two(larger);
pow2 * pow2
};
for hilbert_d in 0..bucket_n {
let (bx, by) = hilbert::d2xy(hilbert_d);
let x = bx as usize * bucket_w;
let y = by as usize * bucket_h;
let w = if img_width >= x {
min(bucket_w, img_width - x)
} else {
bucket_w
};
let h = if img_height >= y {
min(bucket_h, img_height - y)
} else {
bucket_h
};
if x < img_width && y < img_height && w > 0 && h > 0 {
job_queue.push(
BucketJob {
x: x as u32,
y: y as u32,
w: w as u32,
h: h as u32,
}
);
}
}
// Mark done queuing jobs
*all_jobs_queued.write().unwrap() = true;
}
);
// Clear percentage progress print
print!("\r \r");
print!(
"\r \r",
);
// Return the rendered image and stats
return (image, *collective_stats.read().unwrap());
@ -321,14 +324,7 @@ pub struct LightPath {
}
impl LightPath {
fn new(scene: &Scene,
pixel_co: (u32, u32),
image_plane_co: (f32, f32),
lens_uv: (f32, f32),
time: f32,
wavelength: f32,
lds_offset: u32)
-> (LightPath, Ray) {
fn new(scene: &Scene, pixel_co: (u32, u32), image_plane_co: (f32, f32), lens_uv: (f32, f32), time: f32, wavelength: f32, lds_offset: u32) -> (LightPath, Ray) {
(LightPath {
event: LightPathEvent::CameraRay,
bounce_count: 0,
@ -347,11 +343,15 @@ impl LightPath {
color: Float4::splat(0.0),
},
scene.camera.generate_ray(image_plane_co.0,
image_plane_co.1,
time,
lens_uv.0,
lens_uv.1))
scene
.camera
.generate_ray(
image_plane_co.0,
image_plane_co.1,
time,
lens_uv.0,
lens_uv.1,
))
}
fn next_lds_samp(&self) -> f32 {
@ -361,57 +361,51 @@ impl LightPath {
s
}
fn next(&mut self,
xform_stack: &mut TransformStack,
scene: &Scene,
isect: &surface::SurfaceIntersection,
ray: &mut Ray)
-> bool {
fn next(&mut self, xform_stack: &mut TransformStack, scene: &Scene, isect: &surface::SurfaceIntersection, ray: &mut Ray) -> bool {
match self.event {
//--------------------------------------------------------------------
// Result of Camera or bounce ray, prepare next bounce and light rays
LightPathEvent::CameraRay |
LightPathEvent::BounceRay => {
if let &surface::SurfaceIntersection::Hit { intersection_data: ref idata,
ref closure } = isect {
if let &surface::SurfaceIntersection::Hit {
intersection_data: ref idata,
ref closure,
} = isect {
// Hit something! Do the stuff
// Prepare light ray
let light_n = self.next_lds_samp();
let light_uvw =
(self.next_lds_samp(), self.next_lds_samp(), self.next_lds_samp());
let light_uvw = (self.next_lds_samp(), self.next_lds_samp(), self.next_lds_samp());
xform_stack.clear();
let found_light = if let Some((light_color,
shadow_vec,
light_pdf,
light_sel_pdf,
is_infinite)) =
scene.sample_lights(xform_stack,
light_n,
light_uvw,
self.wavelength,
self.time,
isect) {
let found_light = if let Some((light_color, shadow_vec, light_pdf, light_sel_pdf, is_infinite)) =
scene.sample_lights(
xform_stack,
light_n,
light_uvw,
self.wavelength,
self.time,
isect,
) {
// Check if pdf is zero, to avoid NaN's.
if light_pdf > 0.0 {
// Calculate and store the light that will be contributed
// to the film plane if the light is not in shadow.
self.pending_color_addition = {
let material = closure.as_surface_closure();
let la =
material.evaluate(ray.dir, shadow_vec, idata.nor, self.wavelength);
light_color.e * la.e * self.light_attenuation /
(light_pdf * light_sel_pdf)
let la = material.evaluate(ray.dir, shadow_vec, idata.nor, self.wavelength);
light_color.e * la.e * self.light_attenuation / (light_pdf * light_sel_pdf)
};
// Calculate the shadow ray for testing if the light is
// in shadow or not.
// TODO: use proper ray offsets for avoiding self-shadowing
// rather than this hacky stupid stuff.
*ray = Ray::new(idata.pos + shadow_vec.normalized() * 0.001,
shadow_vec,
self.time,
true);
*ray = Ray::new(
idata.pos + shadow_vec.normalized() * 0.001,
shadow_vec,
self.time,
true,
);
// For distant lights
if is_infinite {
@ -445,11 +439,7 @@ impl LightPath {
self.next_attentuation_fac = filter.e / pdf;
// Calculate the ray for this bounce
self.next_bounce_ray = Some(Ray::new(idata.pos +
dir.normalized() * 0.0001,
dir,
self.time,
false));
self.next_bounce_ray = Some(Ray::new(idata.pos + dir.normalized() * 0.0001, dir, self.time, false));
true
} else {
@ -477,9 +467,11 @@ impl LightPath {
}
} else {
// Didn't hit anything, so background color
self.color +=
scene.world.background_color.to_spectral_sample(self.wavelength).e *
self.light_attenuation;
self.color += scene
.world
.background_color
.to_spectral_sample(self.wavelength)
.e * self.light_attenuation;
return false;
}
}

View File

@ -1,5 +1,3 @@
mod monte_carlo;
pub use self::monte_carlo::{square_to_circle, cosine_sample_hemisphere, uniform_sample_hemisphere,
uniform_sample_sphere, uniform_sample_cone, uniform_sample_cone_pdf,
spherical_triangle_solid_angle, uniform_sample_spherical_triangle};
pub use self::monte_carlo::{square_to_circle, cosine_sample_hemisphere, uniform_sample_hemisphere, uniform_sample_sphere, uniform_sample_cone, uniform_sample_cone_pdf, spherical_triangle_solid_angle, uniform_sample_spherical_triangle};

View File

@ -68,9 +68,11 @@ pub fn uniform_sample_cone(u: f32, v: f32, cos_theta_max: f64) -> Vector {
let cos_theta = (1.0 - u as f64) + (u as f64 * cos_theta_max);
let sin_theta = (1.0 - (cos_theta * cos_theta)).sqrt();
let phi = v as f64 * 2.0 * PI_64;
Vector::new((phi.cos() * sin_theta) as f32,
(phi.sin() * sin_theta) as f32,
cos_theta as f32)
Vector::new(
(phi.cos() * sin_theta) as f32,
(phi.sin() * sin_theta) as f32,
cos_theta as f32,
)
}
pub fn uniform_sample_cone_pdf(cos_theta_max: f64) -> f64 {
@ -97,9 +99,15 @@ pub fn spherical_triangle_solid_angle(va: Vector, vb: Vector, vc: Vector) -> f32
}
// Calculate the cosine of the angles at the vertices
let cos_va = ((cos_a - (cos_b * cos_c)) / (sin_b * sin_c)).max(-1.0).min(1.0);
let cos_vb = ((cos_b - (cos_c * cos_a)) / (sin_c * sin_a)).max(-1.0).min(1.0);
let cos_vc = ((cos_c - (cos_a * cos_b)) / (sin_a * sin_b)).max(-1.0).min(1.0);
let cos_va = ((cos_a - (cos_b * cos_c)) / (sin_b * sin_c))
.max(-1.0)
.min(1.0);
let cos_vb = ((cos_b - (cos_c * cos_a)) / (sin_c * sin_a))
.max(-1.0)
.min(1.0);
let cos_vc = ((cos_c - (cos_a * cos_b)) / (sin_a * sin_b))
.max(-1.0)
.min(1.0);
// Calculate the angles themselves, in radians
let ang_va = cos_va.acos();
@ -112,12 +120,7 @@ pub fn spherical_triangle_solid_angle(va: Vector, vb: Vector, vc: Vector) -> f32
/// Generates a uniform sample on a spherical triangle given two uniform
/// random variables i and j in [0, 1].
pub fn uniform_sample_spherical_triangle(va: Vector,
vb: Vector,
vc: Vector,
i: f32,
j: f32)
-> Vector {
pub fn uniform_sample_spherical_triangle(va: Vector, vb: Vector, vc: Vector, i: f32, j: f32) -> Vector {
// Calculate sines and cosines of the spherical triangle's edge lengths
let cos_a: f64 = dot(vb, vc).max(-1.0).min(1.0) as f64;
let cos_b: f64 = dot(vc, va).max(-1.0).min(1.0) as f64;
@ -135,9 +138,15 @@ pub fn uniform_sample_spherical_triangle(va: Vector,
}
// Calculate the cosine of the angles at the vertices
let cos_va = ((cos_a - (cos_b * cos_c)) / (sin_b * sin_c)).max(-1.0).min(1.0);
let cos_vb = ((cos_b - (cos_c * cos_a)) / (sin_c * sin_a)).max(-1.0).min(1.0);
let cos_vc = ((cos_c - (cos_a * cos_b)) / (sin_a * sin_b)).max(-1.0).min(1.0);
let cos_va = ((cos_a - (cos_b * cos_c)) / (sin_b * sin_c))
.max(-1.0)
.min(1.0);
let cos_vb = ((cos_b - (cos_c * cos_a)) / (sin_c * sin_a))
.max(-1.0)
.min(1.0);
let cos_vc = ((cos_c - (cos_a * cos_b)) / (sin_a * sin_b))
.max(-1.0)
.min(1.0);
// Calculate sine for A
let sin_va = (1.0 - (cos_va * cos_va)).sqrt();
@ -163,8 +172,7 @@ pub fn uniform_sample_spherical_triangle(va: Vector,
let q_bottom = ((v * s) + (u * t)) * sin_va;
let q = q_top / q_bottom;
let vc_2 = (va * q as f32) +
((vc - (va * dot(vc, va))).normalized() * (1.0 - (q * q)).sqrt() as f32);
let vc_2 = (va * q as f32) + ((vc - (va * dot(vc, va))).normalized() * (1.0 - (q * q)).sqrt() as f32);
let z = 1.0 - (j * (1.0 - dot(vc_2, vb)));

View File

@ -36,15 +36,11 @@ pub struct Assembly<'a> {
impl<'a> Assembly<'a> {
// Returns (light_color, shadow_vector, pdf, selection_pdf)
pub fn sample_lights(&self,
xform_stack: &mut TransformStack,
n: f32,
uvw: (f32, f32, f32),
wavelength: f32,
time: f32,
intr: &SurfaceIntersection)
-> Option<(SpectralSample, Vector, f32, f32)> {
if let &SurfaceIntersection::Hit { intersection_data: idata, closure } = intr {
pub fn sample_lights(&self, xform_stack: &mut TransformStack, n: f32, uvw: (f32, f32, f32), wavelength: f32, time: f32, intr: &SurfaceIntersection) -> Option<(SpectralSample, Vector, f32, f32)> {
if let &SurfaceIntersection::Hit {
intersection_data: idata,
closure,
} = intr {
let sel_xform = if xform_stack.top().len() > 0 {
lerp_slice(xform_stack.top(), time)
} else {
@ -52,12 +48,14 @@ impl<'a> Assembly<'a> {
};
if let Some((light_i, sel_pdf, whittled_n)) =
self.light_accel
.select(idata.incoming * sel_xform,
idata.pos * sel_xform,
idata.nor * sel_xform,
closure.as_surface_closure(),
time,
n) {
.select(
idata.incoming * sel_xform,
idata.pos * sel_xform,
idata.nor * sel_xform,
closure.as_surface_closure(),
time,
n,
) {
let inst = self.light_instances[light_i];
match inst.instance_type {
@ -83,8 +81,7 @@ impl<'a> Assembly<'a> {
};
// Sample the light
let (color, shadow_vec, pdf) =
light.sample(&xform, idata.pos, uvw.0, uvw.1, wavelength, time);
let (color, shadow_vec, pdf) = light.sample(&xform, idata.pos, uvw.0, uvw.1, wavelength, time);
return Some((color, shadow_vec, pdf, sel_pdf));
}
@ -100,8 +97,7 @@ impl<'a> Assembly<'a> {
}
// Sample sub-assembly lights
let sample = self.assemblies[inst.data_index]
.sample_lights(xform_stack, whittled_n, uvw, wavelength, time, intr);
let sample = self.assemblies[inst.data_index].sample_lights(xform_stack, whittled_n, uvw, wavelength, time, intr);
// Pop the assembly's transforms off the transform stack.
if let Some(_) = inst.transform_indices {
@ -173,12 +169,15 @@ impl<'a> AssemblyBuilder<'a> {
pub fn add_assembly(&mut self, name: &str, asmb: Assembly<'a>) {
// Make sure the name hasn't already been used.
if self.name_exists(name) {
panic!("Attempted to add assembly to another assembly with a name that already \
exists.");
panic!(
"Attempted to add assembly to another assembly with a name that already \
exists."
);
}
// Add assembly
self.assembly_map.insert(name.to_string(), self.assemblies.len());
self.assembly_map
.insert(name.to_string(), self.assemblies.len());
self.assemblies.push(asmb);
}
@ -201,16 +200,14 @@ impl<'a> AssemblyBuilder<'a> {
instance_type: InstanceType::Object,
data_index: self.object_map[name],
id: self.instances.len(),
transform_indices:
xforms.map(|xf| (self.xforms.len(), self.xforms.len() + xf.len())),
transform_indices: xforms.map(|xf| (self.xforms.len(), self.xforms.len() + xf.len())),
}
} else {
Instance {
instance_type: InstanceType::Assembly,
data_index: self.assembly_map[name],
id: self.instances.len(),
transform_indices:
xforms.map(|xf| (self.xforms.len(), self.xforms.len() + xf.len())),
transform_indices: xforms.map(|xf| (self.xforms.len(), self.xforms.len() + xf.len())),
}
};
@ -231,49 +228,59 @@ impl<'a> AssemblyBuilder<'a> {
let (bis, bbs) = self.instance_bounds();
// Build object accel
let object_accel = BVH::from_objects(self.arena,
&mut self.instances[..],
1,
|inst| &bbs[bis[inst.id]..bis[inst.id + 1]]);
let object_accel = BVH::from_objects(
self.arena,
&mut self.instances[..],
1,
|inst| &bbs[bis[inst.id]..bis[inst.id + 1]],
);
// Get list of instances that are for light sources or assemblies that contain light
// sources.
let mut light_instances: Vec<_> = self.instances
.iter()
.filter(|inst| match inst.instance_type {
InstanceType::Object => {
if let Object::Light(_) = self.objects[inst.data_index] {
true
} else {
false
.filter(
|inst| match inst.instance_type {
InstanceType::Object => {
if let Object::Light(_) = self.objects[inst.data_index] {
true
} else {
false
}
}
InstanceType::Assembly => {
self.assemblies[inst.data_index]
.light_accel
.approximate_energy() > 0.0
}
}
InstanceType::Assembly => {
self.assemblies[inst.data_index].light_accel.approximate_energy() > 0.0
}
})
)
.map(|&a| a)
.collect();
// Build light accel
let light_accel = LightTree::from_objects(self.arena, &mut light_instances[..], |inst| {
let bounds = &bbs[bis[inst.id]..bis[inst.id + 1]];
let energy = match inst.instance_type {
InstanceType::Object => {
if let Object::Light(ref light) = self.objects[inst.data_index] {
light.approximate_energy()
} else {
0.0
let light_accel = LightTree::from_objects(
self.arena, &mut light_instances[..], |inst| {
let bounds = &bbs[bis[inst.id]..bis[inst.id + 1]];
let energy = match inst.instance_type {
InstanceType::Object => {
if let Object::Light(ref light) = self.objects[inst.data_index] {
light.approximate_energy()
} else {
0.0
}
}
}
InstanceType::Assembly => {
self.assemblies[inst.data_index].light_accel.approximate_energy()
}
};
(bounds, energy)
});
InstanceType::Assembly => {
self.assemblies[inst.data_index]
.light_accel
.approximate_energy()
}
};
(bounds, energy)
}
);
Assembly {
instances: self.arena.copy_slice(&self.instances),

View File

@ -19,14 +19,7 @@ pub struct Scene<'a> {
}
impl<'a> Scene<'a> {
pub fn sample_lights(&self,
xform_stack: &mut TransformStack,
n: f32,
uvw: (f32, f32, f32),
wavelength: f32,
time: f32,
intr: &SurfaceIntersection)
-> Option<(SpectralSample, Vector, f32, f32, bool)> {
pub fn sample_lights(&self, xform_stack: &mut TransformStack, n: f32, uvw: (f32, f32, f32), wavelength: f32, time: f32, intr: &SurfaceIntersection) -> Option<(SpectralSample, Vector, f32, f32, bool)> {
// TODO: this just selects between world lights and local lights
// with a 50/50 chance. We should do something more sophisticated
// than this, accounting for the estimated impact of the lights
@ -35,10 +28,9 @@ impl<'a> Scene<'a> {
// Calculate relative probabilities of traversing into world lights
// or local lights.
let wl_energy = if self.world
.lights
.iter()
.fold(0.0, |energy, light| energy + light.approximate_energy()) <=
0.0 {
.lights
.iter()
.fold(0.0, |energy, light| energy + light.approximate_energy()) <= 0.0 {
0.0
} else {
1.0
@ -67,7 +59,8 @@ impl<'a> Scene<'a> {
let n = (n - wl_prob) / (1.0 - wl_prob);
if let Some((ss, sv, pdf, spdf)) =
self.root.sample_lights(xform_stack, n, uvw, wavelength, time, intr) {
self.root
.sample_lights(xform_stack, n, uvw, wavelength, time, intr) {
return Some((ss, sv, pdf, spdf * (1.0 - wl_prob), false));
} else {
return None;

View File

@ -42,12 +42,7 @@ pub trait SurfaceClosure {
/// wavelength: The wavelength of light to sample at.
///
/// Returns a tuple with the generated outgoing light direction, color filter, and pdf.
fn sample(&self,
inc: Vector,
nor: Normal,
uv: (f32, f32),
wavelength: f32)
-> (Vector, SpectralSample, f32);
fn sample(&self, inc: Vector, nor: Normal, uv: (f32, f32), wavelength: f32) -> (Vector, SpectralSample, f32);
/// Evaluates the closure for the given incoming and outgoing rays.
///
@ -72,12 +67,7 @@ pub trait SurfaceClosure {
/// This is used for importance sampling, so does not need to be exact,
/// but it does need to be non-zero anywhere that an exact solution would
/// be non-zero.
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32;
fn estimate_eval_over_solid_angle(&self, inc: Vector, out: Vector, nor: Normal, cos_theta: f32) -> f32;
}
@ -173,12 +163,7 @@ impl SurfaceClosure for EmitClosure {
false
}
fn sample(&self,
inc: Vector,
nor: Normal,
uv: (f32, f32),
wavelength: f32)
-> (Vector, SpectralSample, f32) {
fn sample(&self, inc: Vector, nor: Normal, uv: (f32, f32), wavelength: f32) -> (Vector, SpectralSample, f32) {
let _ = (inc, nor, uv); // Not using these, silence warning
(Vector::new(0.0, 0.0, 0.0), SpectralSample::new(wavelength), 1.0)
@ -196,12 +181,7 @@ impl SurfaceClosure for EmitClosure {
1.0
}
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32 {
fn estimate_eval_over_solid_angle(&self, inc: Vector, out: Vector, nor: Normal, cos_theta: f32) -> f32 {
let _ = (inc, out, nor, cos_theta); // Not using these, silence warning
// TODO: what to do here?
@ -227,12 +207,7 @@ impl SurfaceClosure for LambertClosure {
false
}
fn sample(&self,
inc: Vector,
nor: Normal,
uv: (f32, f32),
wavelength: f32)
-> (Vector, SpectralSample, f32) {
fn sample(&self, inc: Vector, nor: Normal, uv: (f32, f32), wavelength: f32) -> (Vector, SpectralSample, f32) {
let nn = if dot(nor.into_vector(), inc) <= 0.0 {
nor.normalized()
} else {
@ -275,12 +250,7 @@ impl SurfaceClosure for LambertClosure {
dot(nn, v).max(0.0) * INV_PI
}
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32 {
fn estimate_eval_over_solid_angle(&self, inc: Vector, out: Vector, nor: Normal, cos_theta: f32) -> f32 {
assert!(cos_theta >= -1.0 && cos_theta <= 1.0);
// Analytically calculates lambert shading from a uniform light source
@ -405,9 +375,7 @@ impl GTRClosure {
let roughness2 = self.roughness * self.roughness;
// Calculate top half of equation
let top = 1.0 -
((roughness2.powf(1.0 - self.tail_shape) * (1.0 - u)) + u)
.powf(1.0 / (1.0 - self.tail_shape));
let top = 1.0 - ((roughness2.powf(1.0 - self.tail_shape) * (1.0 - u)) + u).powf(1.0 / (1.0 - self.tail_shape));
// Calculate bottom half of equation
let bottom = 1.0 - roughness2;
@ -440,12 +408,7 @@ impl SurfaceClosure for GTRClosure {
}
fn sample(&self,
inc: Vector,
nor: Normal,
uv: (f32, f32),
wavelength: f32)
-> (Vector, SpectralSample, f32) {
fn sample(&self, inc: Vector, nor: Normal, uv: (f32, f32), wavelength: f32) -> (Vector, SpectralSample, f32) {
// Get normalized surface normal
let nn = if dot(nor.into_vector(), inc) < 0.0 {
nor.normalized()
@ -499,18 +462,26 @@ impl SurfaceClosure for GTRClosure {
let mut col_f = self.col.to_spectral_sample(wavelength);
let rev_fresnel = 1.0 - self.fresnel;
let c0 = lerp(schlick_fresnel_from_fac(col_f.e.get_0(), hb),
col_f.e.get_0(),
rev_fresnel);
let c1 = lerp(schlick_fresnel_from_fac(col_f.e.get_1(), hb),
col_f.e.get_1(),
rev_fresnel);
let c2 = lerp(schlick_fresnel_from_fac(col_f.e.get_2(), hb),
col_f.e.get_2(),
rev_fresnel);
let c3 = lerp(schlick_fresnel_from_fac(col_f.e.get_3(), hb),
col_f.e.get_3(),
rev_fresnel);
let c0 = lerp(
schlick_fresnel_from_fac(col_f.e.get_0(), hb),
col_f.e.get_0(),
rev_fresnel,
);
let c1 = lerp(
schlick_fresnel_from_fac(col_f.e.get_1(), hb),
col_f.e.get_1(),
rev_fresnel,
);
let c2 = lerp(
schlick_fresnel_from_fac(col_f.e.get_2(), hb),
col_f.e.get_2(),
rev_fresnel,
);
let c3 = lerp(
schlick_fresnel_from_fac(col_f.e.get_3(), hb),
col_f.e.get_3(),
rev_fresnel,
);
col_f.e.set_0(c0);
col_f.e.set_1(c1);
@ -580,12 +551,7 @@ impl SurfaceClosure for GTRClosure {
}
fn estimate_eval_over_solid_angle(&self,
inc: Vector,
out: Vector,
nor: Normal,
cos_theta: f32)
-> f32 {
fn estimate_eval_over_solid_angle(&self, inc: Vector, out: Vector, nor: Normal, cos_theta: f32) -> f32 {
// TODO: all of the stuff in this function is horribly hacky.
// Find a proper way to approximate the light contribution from a
// solid angle.
@ -622,8 +588,10 @@ impl SurfaceClosure for GTRClosure {
let theta = cos_theta.acos();
let hh = (aa + bb).normalized();
let nh = clamp(dot(nn, hh), -1.0, 1.0);
let fac = self.dist(nh,
(1.0f32).min(self.roughness.sqrt() + (2.0 * theta / PI_32)));
let fac = self.dist(
nh,
(1.0f32).min(self.roughness.sqrt() + (2.0 * theta / PI_32)),
);
return fac * (1.0f32).min(1.0 - cos_theta) * INV_PI;
}

View File

@ -12,11 +12,7 @@ use shading::surface_closure::SurfaceClosureUnion;
pub trait Surface: Boundable + Debug + Sync {
fn intersect_rays(&self,
accel_rays: &mut [AccelRay],
wrays: &[Ray],
isects: &mut [SurfaceIntersection],
space: &[Matrix4x4]);
fn intersect_rays(&self, accel_rays: &mut [AccelRay], wrays: &[Ray], isects: &mut [SurfaceIntersection], space: &[Matrix4x4]);
}

View File

@ -24,10 +24,7 @@ pub struct TriangleMesh<'a> {
}
impl<'a> TriangleMesh<'a> {
pub fn from_triangles<'b>(arena: &'b MemArena,
time_samples: usize,
triangles: Vec<(Point, Point, Point)>)
-> TriangleMesh<'b> {
pub fn from_triangles<'b>(arena: &'b MemArena, time_samples: usize, triangles: Vec<(Point, Point, Point)>) -> TriangleMesh<'b> {
assert!(triangles.len() % time_samples == 0);
let mut indices: Vec<usize> = (0..(triangles.len() / time_samples))
@ -44,10 +41,12 @@ impl<'a> TriangleMesh<'a> {
bounds
};
let accel = BVH::from_objects(arena,
&mut indices[..],
3,
|tri_i| &bounds[*tri_i..(*tri_i + time_samples)]);
let accel = BVH::from_objects(
arena,
&mut indices[..],
3,
|tri_i| &bounds[*tri_i..(*tri_i + time_samples)],
);
TriangleMesh {
time_samples: time_samples,
@ -66,61 +65,57 @@ impl<'a> Boundable for TriangleMesh<'a> {
impl<'a> Surface for TriangleMesh<'a> {
fn intersect_rays(&self,
accel_rays: &mut [AccelRay],
wrays: &[Ray],
isects: &mut [SurfaceIntersection],
space: &[Matrix4x4]) {
self.accel.traverse(&mut accel_rays[..], &self.indices, |tri_i, rs| {
for r in rs {
let wr = &wrays[r.id as usize];
let tri =
lerp_slice_with(&self.geo[*tri_i..(*tri_i + self.time_samples)],
wr.time,
|a, b, t| {
(lerp(a.0, b.0, t), lerp(a.1, b.1, t), lerp(a.2, b.2, t))
});
// TODO: when there's no transforms, we don't have to
// transform the triangles at all.
let mat_space = if space.len() > 0 {
lerp_slice(space, wr.time)
} else {
Matrix4x4::new()
};
let mat_inv = mat_space.inverse();
let tri = (tri.0 * mat_inv, tri.1 * mat_inv, tri.2 * mat_inv);
if let Some((t, _, _)) = triangle::intersect_ray(wr, tri) {
if t < r.max_t {
if r.is_occlusion() {
isects[r.id as usize] = SurfaceIntersection::Occlude;
r.mark_done();
fn intersect_rays(&self, accel_rays: &mut [AccelRay], wrays: &[Ray], isects: &mut [SurfaceIntersection], space: &[Matrix4x4]) {
self.accel
.traverse(
&mut accel_rays[..], &self.indices, |tri_i, rs| {
for r in rs {
let wr = &wrays[r.id as usize];
let tri = lerp_slice_with(
&self.geo[*tri_i..(*tri_i + self.time_samples)],
wr.time,
|a, b, t| (lerp(a.0, b.0, t), lerp(a.1, b.1, t), lerp(a.2, b.2, t)),
);
// TODO: when there's no transforms, we don't have to
// transform the triangles at all.
let mat_space = if space.len() > 0 {
lerp_slice(space, wr.time)
} else {
isects[r.id as usize] = SurfaceIntersection::Hit {
intersection_data: SurfaceIntersectionData {
incoming: wr.dir,
t: t,
pos: wr.orig + (wr.dir * t),
nor: cross(tri.0 - tri.1, tri.0 - tri.2).into_normal(), // TODO
nor_g: cross(tri.0 - tri.1, tri.0 - tri.2).into_normal(),
uv: (0.0, 0.0), // TODO
local_space: mat_space,
},
// TODO: get surface closure from surface shader.
closure: SurfaceClosureUnion::LambertClosure(
LambertClosure::new(XYZ::new(0.8, 0.8, 0.8))
),
// closure:
// SurfaceClosureUnion::GTRClosure(
// GTRClosure::new(XYZ::new(0.8, 0.8, 0.8),
// 0.1,
// 2.0,
// 1.0)),
};
r.max_t = t;
Matrix4x4::new()
};
let mat_inv = mat_space.inverse();
let tri = (tri.0 * mat_inv, tri.1 * mat_inv, tri.2 * mat_inv);
if let Some((t, _, _)) = triangle::intersect_ray(wr, tri) {
if t < r.max_t {
if r.is_occlusion() {
isects[r.id as usize] = SurfaceIntersection::Occlude;
r.mark_done();
} else {
isects[r.id as usize] = SurfaceIntersection::Hit {
intersection_data: SurfaceIntersectionData {
incoming: wr.dir,
t: t,
pos: wr.orig + (wr.dir * t),
nor: cross(tri.0 - tri.1, tri.0 - tri.2).into_normal(), // TODO
nor_g: cross(tri.0 - tri.1, tri.0 - tri.2).into_normal(),
uv: (0.0, 0.0), // TODO
local_space: mat_space,
},
// TODO: get surface closure from surface shader.
closure: SurfaceClosureUnion::LambertClosure(LambertClosure::new(XYZ::new(0.8, 0.8, 0.8))),
// closure:
// SurfaceClosureUnion::GTRClosure(
// GTRClosure::new(XYZ::new(0.8, 0.8, 0.8),
// 0.1,
// 2.0,
// 1.0)),
};
r.max_t = t;
}
}
}
}
}
}
});
);
}
}

View File

@ -29,7 +29,12 @@ impl<'a> Tracer<'a> {
self.rays.clear();
self.rays.reserve(wrays.len());
let mut ids = 0..(wrays.len() as u32);
self.rays.extend(wrays.iter().map(|wr| AccelRay::new(wr, ids.next().unwrap())));
self.rays
.extend(
wrays
.iter()
.map(|wr| AccelRay::new(wr, ids.next().unwrap()))
);
return self.inner.trace(wrays, &mut self.rays[..]);
}
@ -46,7 +51,8 @@ impl<'a> TracerInner<'a> {
// Ready the isects
self.isects.clear();
self.isects.reserve(wrays.len());
self.isects.extend(iter::repeat(SurfaceIntersection::Miss).take(wrays.len()));
self.isects
.extend(iter::repeat(SurfaceIntersection::Miss).take(wrays.len()));
let mut ray_sets = split_rays_by_direction(&mut rays[..]);
for ray_set in ray_sets.iter_mut().filter(|ray_set| ray_set.len() > 0) {
@ -56,86 +62,93 @@ impl<'a> TracerInner<'a> {
return &self.isects;
}
fn trace_assembly<'b>(&'b mut self,
assembly: &Assembly,
wrays: &[Ray],
accel_rays: &mut [AccelRay]) {
assembly.object_accel.traverse(&mut accel_rays[..], &assembly.instances[..], |inst, rs| {
// Transform rays if needed
if let Some((xstart, xend)) = inst.transform_indices {
// Push transforms to stack
self.xform_stack.push(&assembly.xforms[xstart..xend]);
fn trace_assembly<'b>(&'b mut self, assembly: &Assembly, wrays: &[Ray], accel_rays: &mut [AccelRay]) {
assembly
.object_accel
.traverse(
&mut accel_rays[..], &assembly.instances[..], |inst, rs| {
// Transform rays if needed
if let Some((xstart, xend)) = inst.transform_indices {
// Push transforms to stack
self.xform_stack.push(&assembly.xforms[xstart..xend]);
// Do transforms
let xforms = self.xform_stack.top();
for ray in &mut rs[..] {
let id = ray.id;
let t = ray.time;
ray.update_from_xformed_world_ray(&wrays[id as usize], &lerp_slice(xforms, t));
}
}
// Trace rays
{
// This is kind of weird looking, but what we're doing here is
// splitting the rays up based on direction if they were
// transformed, and not splitting them up if they weren't
// transformed.
// But to keep the actual tracing code in one place (DRY),
// we map both cases to an array slice that contains slices of
// ray arrays. Gah... that's confusing even when explained.
// TODO: do this in a way that's less confusing. Probably split
// the tracing code out into a trace_instance() method or
// something.
let mut tmp = if let Some(_) = inst.transform_indices {
split_rays_by_direction(rs)
} else {
[&mut rs[..], &mut [], &mut [], &mut [], &mut [], &mut [], &mut [], &mut []]
};
let mut ray_sets = if let Some(_) = inst.transform_indices {
&mut tmp[..]
} else {
&mut tmp[..1]
};
// Loop through the split ray slices and trace them
for ray_set in ray_sets.iter_mut().filter(|ray_set| ray_set.len() > 0) {
match inst.instance_type {
InstanceType::Object => {
self.trace_object(&assembly.objects[inst.data_index], wrays, ray_set);
// Do transforms
let xforms = self.xform_stack.top();
for ray in &mut rs[..] {
let id = ray.id;
let t = ray.time;
ray.update_from_xformed_world_ray(&wrays[id as usize], &lerp_slice(xforms, t));
}
}
InstanceType::Assembly => {
self.trace_assembly(&assembly.assemblies[inst.data_index],
wrays,
ray_set);
// Trace rays
{
// This is kind of weird looking, but what we're doing here is
// splitting the rays up based on direction if they were
// transformed, and not splitting them up if they weren't
// transformed.
// But to keep the actual tracing code in one place (DRY),
// we map both cases to an array slice that contains slices of
// ray arrays. Gah... that's confusing even when explained.
// TODO: do this in a way that's less confusing. Probably split
// the tracing code out into a trace_instance() method or
// something.
let mut tmp = if let Some(_) = inst.transform_indices {
split_rays_by_direction(rs)
} else {
[
&mut rs[..],
&mut [],
&mut [],
&mut [],
&mut [],
&mut [],
&mut [],
&mut [],
]
};
let mut ray_sets = if let Some(_) = inst.transform_indices {
&mut tmp[..]
} else {
&mut tmp[..1]
};
// Loop through the split ray slices and trace them
for ray_set in ray_sets.iter_mut().filter(|ray_set| ray_set.len() > 0) {
match inst.instance_type {
InstanceType::Object => {
self.trace_object(&assembly.objects[inst.data_index], wrays, ray_set);
}
InstanceType::Assembly => {
self.trace_assembly(&assembly.assemblies[inst.data_index], wrays, ray_set);
}
}
}
}
// Un-transform rays if needed
if let Some(_) = inst.transform_indices {
// Pop transforms off stack
self.xform_stack.pop();
// Undo transforms
let xforms = self.xform_stack.top();
if xforms.len() > 0 {
for ray in &mut rs[..] {
let id = ray.id;
let t = ray.time;
ray.update_from_xformed_world_ray(&wrays[id as usize], &lerp_slice(xforms, t));
}
} else {
for ray in &mut rs[..] {
let id = ray.id;
ray.update_from_world_ray(&wrays[id as usize]);
}
}
}
}
}
// Un-transform rays if needed
if let Some(_) = inst.transform_indices {
// Pop transforms off stack
self.xform_stack.pop();
// Undo transforms
let xforms = self.xform_stack.top();
if xforms.len() > 0 {
for ray in &mut rs[..] {
let id = ray.id;
let t = ray.time;
ray.update_from_xformed_world_ray(&wrays[id as usize],
&lerp_slice(xforms, t));
}
} else {
for ray in &mut rs[..] {
let id = ray.id;
ray.update_from_world_ray(&wrays[id as usize]);
}
}
}
});
);
}
fn trace_object<'b>(&'b mut self, obj: &Object, wrays: &[Ray], rays: &mut [AccelRay]) {

View File

@ -94,26 +94,28 @@ impl Float4 {
#[cfg(not(feature = "simd_perf"))]
#[inline]
pub fn v_min(&self, other: Float4) -> Float4 {
Float4::new(if self.get_0() < other.get_0() {
self.get_0()
} else {
other.get_0()
},
if self.get_1() < other.get_1() {
self.get_1()
} else {
other.get_1()
},
if self.get_2() < other.get_2() {
self.get_2()
} else {
other.get_2()
},
if self.get_3() < other.get_3() {
self.get_3()
} else {
other.get_3()
})
Float4::new(
if self.get_0() < other.get_0() {
self.get_0()
} else {
other.get_0()
},
if self.get_1() < other.get_1() {
self.get_1()
} else {
other.get_1()
},
if self.get_2() < other.get_2() {
self.get_2()
} else {
other.get_2()
},
if self.get_3() < other.get_3() {
self.get_3()
} else {
other.get_3()
},
)
}
@ -125,26 +127,28 @@ impl Float4 {
#[cfg(not(feature = "simd_perf"))]
#[inline]
pub fn v_max(&self, other: Float4) -> Float4 {
Float4::new(if self.get_0() > other.get_0() {
self.get_0()
} else {
other.get_0()
},
if self.get_1() > other.get_1() {
self.get_1()
} else {
other.get_1()
},
if self.get_2() > other.get_2() {
self.get_2()
} else {
other.get_2()
},
if self.get_3() > other.get_3() {
self.get_3()
} else {
other.get_3()
})
Float4::new(
if self.get_0() > other.get_0() {
self.get_0()
} else {
other.get_0()
},
if self.get_1() > other.get_1() {
self.get_1()
} else {
other.get_1()
},
if self.get_2() > other.get_2() {
self.get_2()
} else {
other.get_2()
},
if self.get_3() > other.get_3() {
self.get_3()
} else {
other.get_3()
},
)
}
#[cfg(feature = "simd_perf")]
@ -344,8 +348,7 @@ impl Float4 {
impl PartialEq for Float4 {
#[inline]
fn eq(&self, other: &Float4) -> bool {
self.get_0() == other.get_0() && self.get_1() == other.get_1() &&
self.get_2() == other.get_2() && self.get_3() == other.get_3()
self.get_0() == other.get_0() && self.get_1() == other.get_1() && self.get_2() == other.get_2() && self.get_3() == other.get_3()
}
}
@ -595,8 +598,7 @@ impl Bool4 {
#[inline]
pub fn to_bitmask(&self) -> u8 {
(self.get_0() as u8) | ((self.get_1() as u8) << 1) | ((self.get_2() as u8) << 2) |
((self.get_3() as u8) << 3)
(self.get_0() as u8) | ((self.get_1() as u8) << 1) | ((self.get_2() as u8) << 2) | ((self.get_3() as u8) << 3)
}
}

View File

@ -18,7 +18,7 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// Adapted to Rust and to generate Rust instead of C by Nathan Vegdahl
// Adapted from Python to Rust and to generate Rust instead of C by Nathan Vegdahl
// Generate Rust code for evaluating Halton points with Faure-permutations for different bases.
@ -63,7 +63,9 @@ fn main() {
};
// Write the beginning bits of the file
f.write_all(format!(r#"
f.write_all(
format!(
r#"
// Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
@ -90,38 +92,54 @@ fn main() {
pub const MAX_DIMENSION: u32 = {};
"#,
NUM_DIMENSIONS)
.as_bytes())
NUM_DIMENSIONS
)
.as_bytes()
)
.unwrap();
// Write the sampling function
f.write_all(format!(r#"
f.write_all(
format!(
r#"
#[inline]
pub fn sample(dimension: u32, index: u32) -> f32 {{
match dimension {{"#)
.as_bytes())
match dimension {{"#
)
.as_bytes()
)
.unwrap();
for i in 0..NUM_DIMENSIONS {
f.write_all(format!(r#"
f.write_all(
format!(
r#"
{} => halton{}(index),"#,
i,
primes[i])
.as_bytes())
i,
primes[i]
)
.as_bytes()
)
.unwrap();
}
f.write_all(format!(r#"
f.write_all(
format!(
r#"
_ => panic!("Exceeded max dimensions."),
}}
}}
"#)
.as_bytes())
"#
)
.as_bytes()
)
.unwrap();
// Write the special-cased first dimension
f.write_all(format!(r#"
f.write_all(
format!(
r#"
// Special case: radical inverse in base 2, with direct bit reversal.
fn halton2(mut index: u32) -> f32 {{
index = (index << 16) | (index >> 16);
@ -131,8 +149,10 @@ fn halton2(mut index: u32) -> f32 {{
index = ((index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);
return (index as f32) * (1.0 / ((1u64 << 32) as f32));
}}
"#)
.as_bytes())
"#
)
.as_bytes()
)
.unwrap();
for i in 1..NUM_DIMENSIONS {
@ -157,7 +177,9 @@ fn halton2(mut index: u32) -> f32 {{
}
// Build the permutation table.
let perm = (0..pow_base).map(|j| invert(&faure, base, j, digits)).collect::<Vec<_>>();
let perm = (0..pow_base)
.map(|j| invert(&faure, base, j, digits))
.collect::<Vec<_>>();
let perm_string = {
let mut perm_string = String::new();
for i in perm.iter() {
@ -168,22 +190,30 @@ fn halton2(mut index: u32) -> f32 {{
};
let mut power = max_power / pow_base;
f.write_all(format!(r#"
f.write_all(
format!(
r#"
fn halton{}(index: u32) -> f32 {{
const PERM{}: [u16; {}] = [{}];"#,
base,
base,
perm.len(),
perm_string)
.as_bytes())
base,
base,
perm.len(),
perm_string
)
.as_bytes()
)
.unwrap();;
f.write_all(format!(r#"
f.write_all(
format!(
r#"
return (unsafe{{*PERM{}.get_unchecked((index % {}) as usize)}} as u32 * {} +"#,
base,
pow_base,
power)
.as_bytes())
base,
pow_base,
power
)
.as_bytes()
)
.unwrap();;
// Advance to next set of digits.
@ -191,26 +221,34 @@ fn halton{}(index: u32) -> f32 {{
while power / pow_base > 1 {
div *= pow_base;
power /= pow_base;
f.write_all(format!(r#"
f.write_all(
format!(
r#"
unsafe{{*PERM{}.get_unchecked(((index / {}) % {}) as usize)}} as u32 * {} +"#,
base,
div,
pow_base,
power)
.as_bytes())
base,
div,
pow_base,
power
)
.as_bytes()
)
.unwrap();;
}
f.write_all(format!(r#"
f.write_all(
format!(
r#"
unsafe{{*PERM{}.get_unchecked(((index / {}) % {}) as usize)}} as u32) as f32 *
(0.999999940395355224609375f32 / ({}u32 as f32)); // Results in [0,1).
}}
"#,
base,
div * pow_base,
pow_base,
max_power)
.as_bytes())
base,
div * pow_base,
pow_base,
max_power
)
.as_bytes()
)
.unwrap();;
}
}
@ -237,26 +275,30 @@ fn get_faure_permutation(faure: &Vec<Vec<usize>>, b: usize) -> Vec<usize> {
let c = (b - 1) / 2;
return (0..b)
.map(|i| {
.map(
|i| {
if i == c {
return c;
}
let f: usize = faure[b - 1][i - ((i > c) as usize)];
f + ((f >= c) as usize)
})
.collect();
}
)
.collect();
} else {
// even
let c = b / 2;
return (0..b)
.map(|i| if i < c {
.map(
|i| if i < c {
2 * faure[c][i]
} else {
2 * faure[c][i - c] + 1
})
.collect();
}
)
.collect();
}
}

View File

@ -33,23 +33,7 @@ impl Matrix4x4 {
/// i j k l
/// m n o p
#[inline]
pub fn new_from_values(a: f32,
b: f32,
c: f32,
d: f32,
e: f32,
f: f32,
g: f32,
h: f32,
i: f32,
j: f32,
k: f32,
l: f32,
m: f32,
n: f32,
o: f32,
p: f32)
-> Matrix4x4 {
pub fn new_from_values(a: f32, b: f32, c: f32, d: f32, e: f32, f: f32, g: f32, h: f32, i: f32, j: f32, k: f32, l: f32, m: f32, n: f32, o: f32, p: f32) -> Matrix4x4 {
Matrix4x4 {
values: [Float4::new(a, b, c, d),
Float4::new(e, f, g, h),
@ -106,22 +90,30 @@ impl Matrix4x4 {
pub fn transposed(&self) -> Matrix4x4 {
Matrix4x4 {
values: {
[Float4::new(self[0].get_0(),
self[1].get_0(),
self[2].get_0(),
self[3].get_0()),
Float4::new(self[0].get_1(),
self[1].get_1(),
self[2].get_1(),
self[3].get_1()),
Float4::new(self[0].get_2(),
self[1].get_2(),
self[2].get_2(),
self[3].get_2()),
Float4::new(self[0].get_3(),
self[1].get_3(),
self[2].get_3(),
self[3].get_3())]
[Float4::new(
self[0].get_0(),
self[1].get_0(),
self[2].get_0(),
self[3].get_0(),
),
Float4::new(
self[0].get_1(),
self[1].get_1(),
self[2].get_1(),
self[3].get_1(),
),
Float4::new(
self[0].get_2(),
self[1].get_2(),
self[2].get_2(),
self[3].get_2(),
),
Float4::new(
self[0].get_3(),
self[1].get_3(),
self[2].get_3(),
self[3].get_3(),
)]
},
}
}
@ -150,41 +142,33 @@ impl Matrix4x4 {
Matrix4x4 {
values: {
[Float4::new(((self[1].get_1() * c5) - (self[1].get_2() * c4) +
(self[1].get_3() * c3)) * invdet,
((-self[0].get_1() * c5) + (self[0].get_2() * c4) -
(self[0].get_3() * c3)) * invdet,
((self[3].get_1() * s5) - (self[3].get_2() * s4) +
(self[3].get_3() * s3)) * invdet,
((-self[2].get_1() * s5) + (self[2].get_2() * s4) -
(self[2].get_3() * s3)) * invdet),
[Float4::new(
((self[1].get_1() * c5) - (self[1].get_2() * c4) + (self[1].get_3() * c3)) * invdet,
((-self[0].get_1() * c5) + (self[0].get_2() * c4) - (self[0].get_3() * c3)) * invdet,
((self[3].get_1() * s5) - (self[3].get_2() * s4) + (self[3].get_3() * s3)) * invdet,
((-self[2].get_1() * s5) + (self[2].get_2() * s4) - (self[2].get_3() * s3)) * invdet,
),
Float4::new(((-self[1].get_0() * c5) + (self[1].get_2() * c2) -
(self[1].get_3() * c1)) * invdet,
((self[0].get_0() * c5) - (self[0].get_2() * c2) +
(self[0].get_3() * c1)) * invdet,
((-self[3].get_0() * s5) + (self[3].get_2() * s2) -
(self[3].get_3() * s1)) * invdet,
((self[2].get_0() * s5) - (self[2].get_2() * s2) +
(self[2].get_3() * s1)) * invdet),
Float4::new(
((-self[1].get_0() * c5) + (self[1].get_2() * c2) - (self[1].get_3() * c1)) * invdet,
((self[0].get_0() * c5) - (self[0].get_2() * c2) + (self[0].get_3() * c1)) * invdet,
((-self[3].get_0() * s5) + (self[3].get_2() * s2) - (self[3].get_3() * s1)) * invdet,
((self[2].get_0() * s5) - (self[2].get_2() * s2) + (self[2].get_3() * s1)) * invdet,
),
Float4::new(((self[1].get_0() * c4) - (self[1].get_1() * c2) +
(self[1].get_3() * c0)) * invdet,
((-self[0].get_0() * c4) + (self[0].get_1() * c2) -
(self[0].get_3() * c0)) * invdet,
((self[3].get_0() * s4) - (self[3].get_1() * s2) +
(self[3].get_3() * s0)) * invdet,
((-self[2].get_0() * s4) + (self[2].get_1() * s2) -
(self[2].get_3() * s0)) * invdet),
Float4::new(
((self[1].get_0() * c4) - (self[1].get_1() * c2) + (self[1].get_3() * c0)) * invdet,
((-self[0].get_0() * c4) + (self[0].get_1() * c2) - (self[0].get_3() * c0)) * invdet,
((self[3].get_0() * s4) - (self[3].get_1() * s2) + (self[3].get_3() * s0)) * invdet,
((-self[2].get_0() * s4) + (self[2].get_1() * s2) - (self[2].get_3() * s0)) * invdet,
),
Float4::new(((-self[1].get_0() * c3) + (self[1].get_1() * c1) -
(self[1].get_2() * c0)) * invdet,
((self[0].get_0() * c3) - (self[0].get_1() * c1) +
(self[0].get_2() * c0)) * invdet,
((-self[3].get_0() * s3) + (self[3].get_1() * s1) -
(self[3].get_2() * s0)) * invdet,
((self[2].get_0() * s3) - (self[2].get_1() * s1) +
(self[2].get_2() * s0)) * invdet)]
Float4::new(
((-self[1].get_0() * c3) + (self[1].get_1() * c1) - (self[1].get_2() * c0)) * invdet,
((self[0].get_0() * c3) - (self[0].get_1() * c1) + (self[0].get_2() * c0)) * invdet,
((-self[3].get_0() * s3) + (self[3].get_1() * s1) - (self[3].get_2() * s0)) * invdet,
((self[2].get_0() * s3) - (self[2].get_1() * s1) + (self[2].get_2() * s0)) * invdet,
)]
},
}
}
@ -233,25 +217,33 @@ impl Mul<Matrix4x4> for Matrix4x4 {
fn mul(self, other: Matrix4x4) -> Matrix4x4 {
let m = self.transposed();
Matrix4x4 {
values: [Float4::new((m[0] * other[0]).h_sum(),
(m[1] * other[0]).h_sum(),
(m[2] * other[0]).h_sum(),
(m[3] * other[0]).h_sum()),
values: [Float4::new(
(m[0] * other[0]).h_sum(),
(m[1] * other[0]).h_sum(),
(m[2] * other[0]).h_sum(),
(m[3] * other[0]).h_sum(),
),
Float4::new((m[0] * other[1]).h_sum(),
(m[1] * other[1]).h_sum(),
(m[2] * other[1]).h_sum(),
(m[3] * other[1]).h_sum()),
Float4::new(
(m[0] * other[1]).h_sum(),
(m[1] * other[1]).h_sum(),
(m[2] * other[1]).h_sum(),
(m[3] * other[1]).h_sum(),
),
Float4::new((m[0] * other[2]).h_sum(),
(m[1] * other[2]).h_sum(),
(m[2] * other[2]).h_sum(),
(m[3] * other[2]).h_sum()),
Float4::new(
(m[0] * other[2]).h_sum(),
(m[1] * other[2]).h_sum(),
(m[2] * other[2]).h_sum(),
(m[3] * other[2]).h_sum(),
),
Float4::new((m[0] * other[3]).h_sum(),
(m[1] * other[3]).h_sum(),
(m[2] * other[3]).h_sum(),
(m[3] * other[3]).h_sum())],
Float4::new(
(m[0] * other[3]).h_sum(),
(m[1] * other[3]).h_sum(),
(m[2] * other[3]).h_sum(),
(m[3] * other[3]).h_sum(),
)],
}
}
}
@ -268,22 +260,24 @@ mod tests {
fn equality_test() {
let a = Matrix4x4::new();
let b = Matrix4x4::new();
let c = Matrix4x4::new_from_values(1.1,
0.0,
0.0,
0.0,
0.0,
1.1,
0.0,
0.0,
0.0,
0.0,
1.1,
0.0,
0.0,
0.0,
0.0,
1.1);
let c = Matrix4x4::new_from_values(
1.1,
0.0,
0.0,
0.0,
0.0,
1.1,
0.0,
0.0,
0.0,
0.0,
1.1,
0.0,
0.0,
0.0,
0.0,
1.1,
);
assert_eq!(a, b);
assert!(a != c);
@ -292,54 +286,60 @@ mod tests {
#[test]
fn aproximate_equality_test() {
let a = Matrix4x4::new();
let b = Matrix4x4::new_from_values(1.001,
0.0,
0.0,
0.0,
0.0,
1.001,
0.0,
0.0,
0.0,
0.0,
1.001,
0.0,
0.0,
0.0,
0.0,
1.001);
let c = Matrix4x4::new_from_values(1.003,
0.0,
0.0,
0.0,
0.0,
1.003,
0.0,
0.0,
0.0,
0.0,
1.003,
0.0,
0.0,
0.0,
0.0,
1.003);
let d = Matrix4x4::new_from_values(-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001);
let b = Matrix4x4::new_from_values(
1.001,
0.0,
0.0,
0.0,
0.0,
1.001,
0.0,
0.0,
0.0,
0.0,
1.001,
0.0,
0.0,
0.0,
0.0,
1.001,
);
let c = Matrix4x4::new_from_values(
1.003,
0.0,
0.0,
0.0,
0.0,
1.003,
0.0,
0.0,
0.0,
0.0,
1.003,
0.0,
0.0,
0.0,
0.0,
1.003,
);
let d = Matrix4x4::new_from_values(
-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001,
0.0,
0.0,
0.0,
0.0,
-1.001,
);
assert!(a.aprx_eq(b, 0.002));
assert!(!a.aprx_eq(c, 0.002));
@ -348,76 +348,84 @@ mod tests {
#[test]
fn multiply_test() {
let a = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0);
let b = Matrix4x4::new_from_values(1.0,
5.0,
9.0,
13.0,
2.0,
6.0,
10.0,
14.0,
3.0,
7.0,
11.0,
15.0,
4.0,
8.0,
12.0,
16.0);
let c = Matrix4x4::new_from_values(266.0,
141.0,
331.0,
188.5,
292.0,
158.0,
366.0,
213.0,
318.0,
175.0,
401.0,
237.5,
344.0,
192.0,
436.0,
262.0);
let a = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0,
);
let b = Matrix4x4::new_from_values(
1.0,
5.0,
9.0,
13.0,
2.0,
6.0,
10.0,
14.0,
3.0,
7.0,
11.0,
15.0,
4.0,
8.0,
12.0,
16.0,
);
let c = Matrix4x4::new_from_values(
266.0,
141.0,
331.0,
188.5,
292.0,
158.0,
366.0,
213.0,
318.0,
175.0,
401.0,
237.5,
344.0,
192.0,
436.0,
262.0,
);
assert_eq!(a * b, c);
}
#[test]
fn inverse_test() {
let a = Matrix4x4::new_from_values(1.0,
0.33,
0.0,
-2.0,
0.0,
1.0,
0.0,
0.0,
2.1,
0.7,
1.3,
0.0,
0.0,
0.0,
0.0,
-1.0);
let a = Matrix4x4::new_from_values(
1.0,
0.33,
0.0,
-2.0,
0.0,
1.0,
0.0,
0.0,
2.1,
0.7,
1.3,
0.0,
0.0,
0.0,
0.0,
-1.0,
);
let b = a.inverse();
let c = Matrix4x4::new();
@ -426,38 +434,42 @@ mod tests {
#[test]
fn transpose_test() {
let a = Matrix4x4::new_from_values(1.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0,
16.0);
let b = Matrix4x4::new_from_values(1.0,
5.0,
9.0,
13.0,
2.0,
6.0,
10.0,
14.0,
3.0,
7.0,
11.0,
15.0,
4.0,
8.0,
12.0,
16.0);
let a = Matrix4x4::new_from_values(
1.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
9.0,
10.0,
11.0,
12.0,
13.0,
14.0,
15.0,
16.0,
);
let b = Matrix4x4::new_from_values(
1.0,
5.0,
9.0,
13.0,
2.0,
6.0,
10.0,
14.0,
3.0,
7.0,
11.0,
15.0,
4.0,
8.0,
12.0,
16.0,
);
let c = a.transposed();
assert_eq!(b, c);

View File

@ -127,10 +127,12 @@ impl Mul<Matrix4x4> for Normal {
fn mul(self, other: Matrix4x4) -> Normal {
let mat = other.inverse().transposed();
Normal {
co: Float4::new((self.co * mat.values[0]).h_sum(),
(self.co * mat.values[1]).h_sum(),
(self.co * mat.values[2]).h_sum(),
0.0),
co: Float4::new(
(self.co * mat.values[0]).h_sum(),
(self.co * mat.values[1]).h_sum(),
(self.co * mat.values[2]).h_sum(),
0.0,
),
}
}
}
@ -168,13 +170,12 @@ impl CrossProduct for Normal {
#[inline]
fn cross(self, other: Normal) -> Normal {
Normal {
co: Float4::new((self.co.get_1() * other.co.get_2()) -
(self.co.get_2() * other.co.get_1()),
(self.co.get_2() * other.co.get_0()) -
(self.co.get_0() * other.co.get_2()),
(self.co.get_0() * other.co.get_1()) -
(self.co.get_1() * other.co.get_0()),
0.0),
co: Float4::new(
(self.co.get_1() * other.co.get_2()) - (self.co.get_2() * other.co.get_1()),
(self.co.get_2() * other.co.get_0()) - (self.co.get_0() * other.co.get_2()),
(self.co.get_0() * other.co.get_1()) - (self.co.get_1() * other.co.get_0()),
0.0,
),
}
}
}
@ -215,22 +216,24 @@ mod tests {
#[test]
fn mul_matrix_1() {
let n = Normal::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0,
);
let nm = Normal::new(-19.258825, 5.717648, -1.770588);
assert!(((n * m) - nm).length2() < 0.00001);
}

View File

@ -133,10 +133,12 @@ impl Mul<Matrix4x4> for Point {
#[inline]
fn mul(self, other: Matrix4x4) -> Point {
Point {
co: Float4::new((self.co * other.values[0]).h_sum(),
(self.co * other.values[1]).h_sum(),
(self.co * other.values[2]).h_sum(),
(self.co * other.values[3]).h_sum()),
co: Float4::new(
(self.co * other.values[0]).h_sum(),
(self.co * other.values[1]).h_sum(),
(self.co * other.values[2]).h_sum(),
(self.co * other.values[3]).h_sum(),
),
}
}
}
@ -177,22 +179,24 @@ mod tests {
#[test]
fn mul_matrix_1() {
let p = Point::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
0.0,
0.0,
0.0,
1.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
0.0,
0.0,
0.0,
1.0,
);
let pm = Point::new(15.5, 54.0, 70.0);
assert_eq!(p * m, pm);
}
@ -200,22 +204,24 @@ mod tests {
#[test]
fn mul_matrix_2() {
let p = Point::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
2.0,
3.0,
1.0,
5.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
2.0,
3.0,
1.0,
5.0,
);
let mut pm = Point::new(15.5, 54.0, 70.0);
pm.co.set_3(18.5);
assert_eq!(p * m, pm);
@ -225,38 +231,42 @@ mod tests {
fn mul_matrix_3() {
// Make sure matrix multiplication composes the way one would expect
let p = Point::new(1.0, 2.5, 4.0);
let m1 = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0);
let m2 = Matrix4x4::new_from_values(4.0,
1.0,
2.0,
3.5,
3.0,
6.0,
5.0,
2.0,
2.0,
2.0,
4.0,
12.0,
5.0,
7.0,
8.0,
11.0);
let m1 = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0,
);
let m2 = Matrix4x4::new_from_values(
4.0,
1.0,
2.0,
3.5,
3.0,
6.0,
5.0,
2.0,
2.0,
2.0,
4.0,
12.0,
5.0,
7.0,
8.0,
11.0,
);
println!("{:?}", m1 * m2);
let pmm1 = p * (m1 * m2);

View File

@ -127,10 +127,12 @@ impl Mul<Matrix4x4> for Vector {
#[inline]
fn mul(self, other: Matrix4x4) -> Vector {
Vector {
co: Float4::new((self.co * other.values[0]).h_sum(),
(self.co * other.values[1]).h_sum(),
(self.co * other.values[2]).h_sum(),
(self.co * other.values[3]).h_sum()),
co: Float4::new(
(self.co * other.values[0]).h_sum(),
(self.co * other.values[1]).h_sum(),
(self.co * other.values[2]).h_sum(),
(self.co * other.values[3]).h_sum(),
),
}
}
}
@ -168,13 +170,12 @@ impl CrossProduct for Vector {
#[inline]
fn cross(self, other: Vector) -> Vector {
Vector {
co: Float4::new((self.co.get_1() * other.co.get_2()) -
(self.co.get_2() * other.co.get_1()),
(self.co.get_2() * other.co.get_0()) -
(self.co.get_0() * other.co.get_2()),
(self.co.get_0() * other.co.get_1()) -
(self.co.get_1() * other.co.get_0()),
0.0),
co: Float4::new(
(self.co.get_1() * other.co.get_2()) - (self.co.get_2() * other.co.get_1()),
(self.co.get_2() * other.co.get_0()) - (self.co.get_0() * other.co.get_2()),
(self.co.get_0() * other.co.get_1()) - (self.co.get_1() * other.co.get_0()),
0.0,
),
}
}
}
@ -215,22 +216,24 @@ mod tests {
#[test]
fn mul_matrix_1() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0,
);
let mut vm = Vector::new(14.0, 46.0, 58.0);
vm.co.set_3(90.5);
assert_eq!(v * m, vm);
@ -239,22 +242,24 @@ mod tests {
#[test]
fn mul_matrix_2() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
0.0,
0.0,
0.0,
1.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
0.0,
0.0,
0.0,
1.0,
);
let vm = Vector::new(14.0, 46.0, 58.0);
assert_eq!(v * m, vm);
}

View File

@ -137,9 +137,7 @@ impl MemArena {
/// the type's inherent alignment, whichever is greater.
///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_uninitialized_with_alignment<'a, T: Copy>(&'a self,
align: usize)
-> &'a mut T {
pub unsafe fn alloc_uninitialized_with_alignment<'a, T: Copy>(&'a self, align: usize) -> &'a mut T {
assert!(size_of::<T>() > 0);
let memory = self.alloc_raw(size_of::<T>(), max(align, align_of::<T>())) as *mut T;
@ -164,11 +162,7 @@ impl MemArena {
///
/// Additionally, the allocation will be made with the given byte alignment or
/// the type's inherent alignment, whichever is greater.
pub fn alloc_array_with_alignment<'a, T: Copy>(&'a self,
len: usize,
value: T,
align: usize)
-> &'a mut [T] {
pub fn alloc_array_with_alignment<'a, T: Copy>(&'a self, len: usize, value: T, align: usize) -> &'a mut [T] {
let memory = unsafe { self.alloc_array_uninitialized_with_alignment(len, align) };
for v in memory.iter_mut() {
@ -195,10 +189,7 @@ impl MemArena {
///
/// Additionally, the allocation will be made with the given byte alignment or
/// the type's inherent alignment, whichever is greater.
pub fn copy_slice_with_alignment<'a, T: Copy>(&'a self,
other: &[T],
align: usize)
-> &'a mut [T] {
pub fn copy_slice_with_alignment<'a, T: Copy>(&'a self, other: &[T], align: usize) -> &'a mut [T] {
let memory = unsafe { self.alloc_array_uninitialized_with_alignment(other.len(), align) };
for (v, other) in memory.iter_mut().zip(other.iter()) {
@ -231,10 +222,7 @@ impl MemArena {
/// the type's inherent alignment, whichever is greater.
///
/// CAUTION: the memory returned is uninitialized. Make sure to initalize before using!
pub unsafe fn alloc_array_uninitialized_with_alignment<'a, T: Copy>(&'a self,
len: usize,
align: usize)
-> &'a mut [T] {
pub unsafe fn alloc_array_uninitialized_with_alignment<'a, T: Copy>(&'a self, len: usize, align: usize) -> &'a mut [T] {
assert!(size_of::<T>() > 0);
let array_mem_size = {
@ -257,7 +245,8 @@ impl MemArena {
unsafe fn alloc_raw(&self, size: usize, alignment: usize) -> *mut u8 {
assert!(alignment > 0);
self.stat_space_allocated.set(self.stat_space_allocated.get() + size); // Update stats
self.stat_space_allocated
.set(self.stat_space_allocated.get() + size); // Update stats
let mut blocks = self.blocks.borrow_mut();
@ -295,10 +284,8 @@ impl MemArena {
};
let waste_percentage = {
let w1 = ((blocks[0].capacity() - blocks[0].len()) * 100) /
blocks[0].capacity();
let w2 = ((self.stat_space_occupied.get() - self.stat_space_allocated.get()) *
100) / self.stat_space_occupied.get();
let w1 = ((blocks[0].capacity() - blocks[0].len()) * 100) / blocks[0].capacity();
let w2 = ((self.stat_space_occupied.get() - self.stat_space_allocated.get()) * 100) / self.stat_space_occupied.get();
if w1 < w2 { w1 } else { w2 }
};
@ -311,8 +298,7 @@ impl MemArena {
blocks.push(Vec::with_capacity(size + alignment - 1));
blocks.last_mut().unwrap().set_len(size + alignment - 1);
let start_index = alignment_offset(blocks.last().unwrap().as_ptr() as usize,
alignment);
let start_index = alignment_offset(blocks.last().unwrap().as_ptr() as usize, alignment);
let block_ptr = blocks.last_mut().unwrap().as_mut_ptr();
return block_ptr.offset(start_index as isize);
@ -320,14 +306,14 @@ impl MemArena {
// Otherwise create a new shared block.
else {
// Update stats
self.stat_space_occupied.set(self.stat_space_occupied.get() + next_size);
self.stat_space_occupied
.set(self.stat_space_occupied.get() + next_size);
blocks.push(Vec::with_capacity(next_size));
let block_count = blocks.len();
blocks.swap(0, block_count - 1);
let start_index = alignment_offset(blocks.first().unwrap().as_ptr() as usize,
alignment);
let start_index = alignment_offset(blocks.first().unwrap().as_ptr() as usize, alignment);
blocks.first_mut().unwrap().set_len(start_index + size);

File diff suppressed because it is too large Load Diff