Further work on accurate ray/triangle intersections.

The previous commit dealt with triangles self-shadowing.  This
commit deals with avoiding intersections with _other_ objects
very near a triangle ending up being erroneously shadowed by
it.
This commit is contained in:
Nathan Vegdahl 2017-07-10 23:37:50 -07:00
parent b315be0913
commit 972c2a90a7

View File

@ -1,5 +1,6 @@
#![allow(dead_code)]
use fp_utils::fp_gamma;
use math::Point;
use ray::Ray;
@ -79,16 +80,64 @@ pub fn intersect_ray(ray: &Ray, tri: (Point, Point, Point)) -> Option<(f32, f32,
let p0z = sz * p0.get_n(zi);
let p1z = sz * p1.get_n(zi);
let p2z = sz * p2.get_n(zi);
let t = (e0 * p0z) + (e1 * p1z) + (e2 * p2z);
let t_scaled = (e0 * p0z) + (e1 * p1z) + (e2 * p2z);
// Check if the hitpoint t is within ray min/max t.
if det > 0.0 && (t <= 0.0 || t > (ray.max_t * det)) {
if det > 0.0 && (t_scaled <= 0.0 || t_scaled > (ray.max_t * det)) {
return None;
} else if det < 0.0 && (t >= 0.0 || t < (ray.max_t * det)) {
} else if det < 0.0 && (t_scaled >= 0.0 || t_scaled < (ray.max_t * det)) {
return None;
}
// Return t and the hitpoint barycentric coordinates.
// Calculate t and the hitpoint barycentric coordinates.
let inv_det = 1.0 / det;
Some((t * inv_det, e0 * inv_det, e1 * inv_det, e2 * inv_det))
let b0 = e0 * inv_det;
let b1 = e1 * inv_det;
let b2 = e2 * inv_det;
let t = t_scaled * inv_det;
// Check error bounds on t for very close hit points.
// The technique used here is from "Physically Based Rendering: From Theory
// to Implementation" third edition by Pharr et al.
{
// Calculate delta z
let max_zt = max_abs_3(p0z, p1z, p2z);
let dz = fp_gamma(3) * max_zt;
// Calculate delta x and y
let max_xt = max_abs_3(p0x, p1x, p2x);
let max_yt = max_abs_3(p0y, p1y, p2y);
let dx = fp_gamma(5) * (max_xt + max_zt);
let dy = fp_gamma(5) * (max_yt + max_zt);
// Calculate delta e
let de = 2.0 * ((fp_gamma(2) * max_xt * max_yt) + (dy * max_xt + dx * max_yt));
// Calculate delta t
let max_e = max_abs_3(e0, e1, e2);
let dt = 3.0 * ((fp_gamma(3) * max_e * max_zt) + (de * max_zt + dz * max_e)) *
inv_det.abs();
// Finally, do the check
if t <= dt {
return None;
}
}
// Return t and barycentric coordinates
Some((t, b0, b1, b2))
}
fn max_abs_3(a: f32, b: f32, c: f32) -> f32 {
let a = a.abs();
let b = b.abs();
let c = c.abs();
if a > b && a > c {
a
} else if b > c {
b
} else {
c
}
}