Remove non-SIMD BVH4, and keep more bool calculations in SIMD format.

This commit is contained in:
Nathan Vegdahl 2019-06-29 07:22:22 +09:00
parent c5d23592b9
commit b09f9684d1
9 changed files with 234 additions and 575 deletions

View File

@ -1,13 +1,17 @@
//! This BVH4 implementation is based on the ideas from the paper
//! "Efficient Ray Tracing Kernels for Modern CPU Architectures"
//! by Fuetterling et al.
#![allow(dead_code)] #![allow(dead_code)]
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
use math3d::Vector;
use mem_arena::MemArena; use mem_arena::MemArena;
use crate::{ use crate::{
bbox::BBox, bbox::BBox,
bbox4::BBox4,
boundable::Boundable, boundable::Boundable,
lerp::lerp_slice, lerp::lerp_slice,
math::Vector,
ray::{RayBatch, RayStack}, ray::{RayBatch, RayStack},
timer::Timer, timer::Timer,
}; };
@ -17,6 +21,9 @@ use super::{
ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME, ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME,
}; };
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
use float4::Bool4;
pub fn ray_code(dir: Vector) -> usize { pub fn ray_code(dir: Vector) -> usize {
let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0]; let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0];
ray_sign_is_neg[0] as usize ray_sign_is_neg[0] as usize
@ -28,20 +35,19 @@ pub fn ray_code(dir: Vector) -> usize {
pub struct BVH4<'a> { pub struct BVH4<'a> {
root: Option<&'a BVH4Node<'a>>, root: Option<&'a BVH4Node<'a>>,
depth: usize, depth: usize,
node_count: usize,
_bounds: Option<&'a [BBox]>,
} }
#[derive(Copy, Clone, Debug)] #[derive(Copy, Clone, Debug)]
pub enum BVH4Node<'a> { pub enum BVH4Node<'a> {
Inner { Internal {
traversal_code: u8, bounds: &'a [BBox4],
bounds_start: &'a BBox,
bounds_len: u16,
children: &'a [BVH4Node<'a>], children: &'a [BVH4Node<'a>],
traversal_code: u8,
}, },
Leaf { Leaf {
bounds_start: &'a BBox,
bounds_len: u16,
object_range: (usize, usize), object_range: (usize, usize),
}, },
} }
@ -56,19 +62,32 @@ impl<'a> BVH4<'a> {
where where
F: 'b + Fn(&T) -> &'b [BBox], F: 'b + Fn(&T) -> &'b [BBox],
{ {
if objects.is_empty() { if objects.len() == 0 {
BVH4 { BVH4 {
root: None, root: None,
depth: 0, depth: 0,
node_count: 0,
_bounds: None,
} }
} else { } else {
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder); let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
let root = unsafe { arena.alloc_uninitialized::<BVH4Node>() }; let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) };
BVH4::construct_from_base(arena, &base, base.root_node_index(), root); let node_count = BVH4::construct_from_base(
arena,
&base,
&base.nodes[base.root_node_index()],
fill_node,
);
BVH4 { BVH4 {
root: Some(root), root: Some(fill_node),
depth: base.depth, depth: (base.depth / 2) + 1,
node_count: node_count,
_bounds: {
let range = base.nodes[base.root_node_index()].bounds_range();
Some(arena.copy_slice(&base.bounds[range.0..range.1]))
},
} }
} }
} }
@ -103,118 +122,64 @@ impl<'a> BVH4<'a> {
while stack_ptr > 0 { while stack_ptr > 0 {
node_tests += ray_stack.ray_count_in_next_task() as u64; node_tests += ray_stack.ray_count_in_next_task() as u64;
match *node_stack[stack_ptr] { match node_stack[stack_ptr] {
BVH4Node::Inner { &BVH4Node::Internal {
traversal_code, bounds,
bounds_start,
bounds_len,
children, children,
traversal_code,
} => { } => {
// Test rays against bbox. let mut all_hits = Bool4::new_false();
let bounds =
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let mut hit_count = 0; // Ray testing
ray_stack.pop_do_next_task(children.len(), |ray_idx| { ray_stack.pop_do_next_task_and_push_rays(children.len(), |ray_idx| {
let hit = (!rays.is_done(ray_idx)) if rays.is_done(ray_idx) {
&& lerp_slice(bounds, rays.time(ray_idx)).intersect_ray( (Bool4::new_false(), 0)
} else {
let hits = lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
rays.orig_local(ray_idx), rays.orig_local(ray_idx),
rays.dir_inv_local(ray_idx), rays.dir_inv_local(ray_idx),
rays.max_t(ray_idx), rays.max_t(ray_idx),
); );
all_hits = all_hits | hits;
if hit { (hits, children.len())
hit_count += 1;
([0, 1, 2, 3], children.len())
} else {
([0; 4], 0)
} }
}); });
// If there were any intersections, create tasks. // If there were any intersections, create tasks.
if hit_count > 0 { if !all_hits.is_all_false() {
let order_code = traversal_table[traversal_code as usize]; let order_code = traversal_table[traversal_code as usize];
match children.len() { let mut lanes = [0usize; 4];
4 => { let mut lane_count = 0;
let i4 = ((order_code >> 6) & 0b11) as usize; for i in 0..children.len() {
let i3 = ((order_code >> 4) & 0b11) as usize; let inv_i = (children.len() - 1) - i;
let i2 = ((order_code >> 2) & 0b11) as usize; let child_i = ((order_code >> (inv_i * 2)) & 3) as usize;
let i1 = (order_code & 0b11) as usize; if all_hits.get_n(child_i) {
node_stack[stack_ptr + lane_count] = &children[child_i];
ray_stack.push_lanes_to_tasks(&[i4, i3, i2, i1]); lanes[lane_count] = child_i;
lane_count += 1;
node_stack[stack_ptr] = &children[i4];
node_stack[stack_ptr + 1] = &children[i3];
node_stack[stack_ptr + 2] = &children[i2];
node_stack[stack_ptr + 3] = &children[i1];
stack_ptr += 3;
} }
3 => {
let i3 = ((order_code >> 4) & 0b11) as usize;
let i2 = ((order_code >> 2) & 0b11) as usize;
let i1 = (order_code & 0b11) as usize;
ray_stack.push_lanes_to_tasks(&[i3, i2, i1]);
node_stack[stack_ptr] = &children[i3];
node_stack[stack_ptr + 1] = &children[i2];
node_stack[stack_ptr + 2] = &children[i1];
stack_ptr += 2;
} }
2 => {
let i2 = ((order_code >> 2) & 0b11) as usize;
let i1 = (order_code & 0b11) as usize;
ray_stack.push_lanes_to_tasks(&[i2, i1]); ray_stack.push_lanes_to_tasks(&lanes[..lane_count]);
stack_ptr += lane_count - 1;
node_stack[stack_ptr] = &children[i2];
node_stack[stack_ptr + 1] = &children[i1];
stack_ptr += 1;
}
_ => unreachable!(),
}
} else { } else {
stack_ptr -= 1; stack_ptr -= 1;
} }
} }
BVH4Node::Leaf { &BVH4Node::Leaf { object_range } => {
object_range,
bounds_start,
bounds_len,
} => {
// Test rays against bounds.
let bounds =
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
let object_count = object_range.1 - object_range.0;
let mut hit_count = 0;
ray_stack.pop_do_next_task(object_count, |ray_idx| {
let hit = (!rays.is_done(ray_idx))
&& lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
rays.orig_local(ray_idx),
rays.dir_inv_local(ray_idx),
rays.max_t(ray_idx),
);
if hit {
hit_count += 1;
([0, 1, 2, 3], object_count)
} else {
([0; 4], 0)
}
});
trav_time += timer.tick() as f64; trav_time += timer.tick() as f64;
if hit_count > 0 { // Set up the tasks for each object.
ray_stack.push_lanes_to_tasks(&[0, 1, 2, 3, 4, 5, 6, 7][..object_count]); let obj_count = object_range.1 - object_range.0;
for _ in 0..(obj_count - 1) {
ray_stack.duplicate_next_task();
}
// Do the ray tests.
for obj in &objects[object_range.0..object_range.1] { for obj in &objects[object_range.0..object_range.1] {
obj_ray_test(obj, rays, ray_stack); obj_ray_test(obj, rays, ray_stack);
} }
}
timer.tick(); timer.tick();
@ -237,12 +202,15 @@ impl<'a> BVH4<'a> {
fn construct_from_base( fn construct_from_base(
arena: &'a MemArena, arena: &'a MemArena,
base: &BVHBase, base: &BVHBase,
node_index: usize, node: &BVHBaseNode,
node_mem: &mut BVH4Node<'a>, fill_node: &mut BVH4Node<'a>,
) { ) -> usize {
match base.nodes[node_index] { let mut node_count = 0;
BVHBaseNode::Internal {
bounds_range, match node {
// Create internal node
&BVHBaseNode::Internal {
bounds_range: _,
children_indices, children_indices,
split_axis, split_axis,
} => { } => {
@ -251,7 +219,7 @@ impl<'a> BVH4<'a> {
// Prepare convenient access to the stuff we need. // Prepare convenient access to the stuff we need.
let child_count: usize; let child_count: usize;
let child_indices: [usize; 4]; let children; // [Optional, Optional, Optional, Optional]
let split_info: SplitAxes; let split_info: SplitAxes;
match *child_l { match *child_l {
BVHBaseNode::Internal { BVHBaseNode::Internal {
@ -267,13 +235,23 @@ impl<'a> BVH4<'a> {
} => { } => {
// Four nodes // Four nodes
child_count = 4; child_count = 4;
child_indices = [i_l.0, i_l.1, i_r.0, i_r.1]; children = [
Some(&base.nodes[i_l.0]),
Some(&base.nodes[i_l.1]),
Some(&base.nodes[i_r.0]),
Some(&base.nodes[i_r.1]),
];
split_info = SplitAxes::Full((split_axis, s_l, s_r)); split_info = SplitAxes::Full((split_axis, s_l, s_r));
} }
BVHBaseNode::Leaf { .. } => { BVHBaseNode::Leaf { .. } => {
// Three nodes with left split // Three nodes with left split
child_count = 3; child_count = 3;
child_indices = [i_l.0, i_l.1, children_indices.1, 0]; children = [
Some(&base.nodes[i_l.0]),
Some(&base.nodes[i_l.1]),
Some(child_r),
None,
];
split_info = SplitAxes::Left((split_axis, s_l)); split_info = SplitAxes::Left((split_axis, s_l));
} }
} }
@ -287,76 +265,112 @@ impl<'a> BVH4<'a> {
} => { } => {
// Three nodes with right split // Three nodes with right split
child_count = 3; child_count = 3;
child_indices = [children_indices.0, i_r.0, i_r.1, 0]; children = [
Some(child_l),
Some(&base.nodes[i_r.0]),
Some(&base.nodes[i_r.1]),
None,
];
split_info = SplitAxes::Right((split_axis, s_r)); split_info = SplitAxes::Right((split_axis, s_r));
} }
BVHBaseNode::Leaf { .. } => { BVHBaseNode::Leaf { .. } => {
// Two nodes // Two nodes
child_count = 2; child_count = 2;
child_indices = [children_indices.0, children_indices.1, 0, 0]; children = [Some(child_l), Some(child_r), None, None];
split_info = SplitAxes::TopOnly(split_axis); split_info = SplitAxes::TopOnly(split_axis);
} }
} }
} }
} }
// Copy bounds node_count += child_count;
let bounds = arena
.copy_slice_with_alignment(&base.bounds[bounds_range.0..bounds_range.1], 32);
// Build children // Construct bounds
let children_mem = unsafe { let bounds = {
let bounds_len = children
.iter()
.map(|c| {
if let &Some(n) = c {
let len = n.bounds_range().1 - n.bounds_range().0;
debug_assert!(len >= 1);
len
} else {
0
}
})
.max()
.unwrap();
debug_assert!(bounds_len >= 1);
let bounds =
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
if bounds_len < 2 {
let b1 =
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b2 =
children[1].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b3 =
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b4 =
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4);
} else {
for (i, b) in bounds.iter_mut().enumerate() {
let time = i as f32 / (bounds_len - 1) as f32;
let b1 = children[0].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b2 = children[1].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b3 = children[2].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b4 = children[3].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
*b = BBox4::from_bboxes(b1, b2, b3, b4);
}
}
bounds
};
// Construct child nodes
let child_nodes = unsafe {
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32) arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32)
}; };
for i in 0..child_count { for (i, c) in children[0..child_count].iter().enumerate() {
BVH4::construct_from_base(arena, base, child_indices[i], &mut children_mem[i]); node_count +=
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
} }
// Fill in node // Build this node
*node_mem = BVH4Node::Inner { *fill_node = BVH4Node::Internal {
bounds: bounds,
children: child_nodes,
traversal_code: calc_traversal_code(split_info), traversal_code: calc_traversal_code(split_info),
bounds_start: &bounds[0],
bounds_len: bounds.len() as u16,
children: children_mem,
}; };
} }
BVHBaseNode::Leaf { // Create internal node
bounds_range, &BVHBaseNode::Leaf { object_range, .. } => {
object_range, *fill_node = BVH4Node::Leaf {
} => {
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
*node_mem = BVH4Node::Leaf {
bounds_start: &bounds[0],
bounds_len: bounds.len() as u16,
object_range: object_range, object_range: object_range,
}; };
node_count += 1;
} }
} }
}
}
lazy_static! { return node_count;
static ref DEGENERATE_BOUNDS: [BBox; 1] = [BBox::new()]; }
} }
impl<'a> Boundable for BVH4<'a> { impl<'a> Boundable for BVH4<'a> {
fn bounds(&self) -> &[BBox] { fn bounds<'b>(&'b self) -> &'b [BBox] {
match self.root { self._bounds.unwrap_or(&[])
None => &DEGENERATE_BOUNDS[..],
Some(root) => match *root {
BVH4Node::Inner {
bounds_start,
bounds_len,
..
}
| BVH4Node::Leaf {
bounds_start,
bounds_len,
..
} => unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) },
},
}
} }
} }

View File

@ -1,386 +0,0 @@
//! This BVH4 implementation pulls a lot of ideas from the paper
//! "Efficient Ray Tracing Kernels for Modern CPU Architectures"
//! by Fuetterling et al.
//!
//! Specifically, the table-based traversal order approach they
//! propose is largely followed by this implementation.
#![allow(dead_code)]
use mem_arena::MemArena;
use crate::{
bbox::BBox,
bbox4::BBox4,
boundable::Boundable,
lerp::lerp_slice,
math::Vector,
ray::{RayBatch, RayStack},
timer::Timer,
};
use super::{
bvh_base::{BVHBase, BVHBaseNode, BVH_MAX_DEPTH},
ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME,
};
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
use float4::Bool4;
pub fn ray_code(dir: Vector) -> usize {
let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0];
ray_sign_is_neg[0] as usize
+ ((ray_sign_is_neg[1] as usize) << 1)
+ ((ray_sign_is_neg[2] as usize) << 2)
}
#[derive(Copy, Clone, Debug)]
pub struct BVH4<'a> {
root: Option<&'a BVH4Node<'a>>,
depth: usize,
node_count: usize,
_bounds: Option<&'a [BBox]>,
}
#[derive(Copy, Clone, Debug)]
pub enum BVH4Node<'a> {
Internal {
bounds: &'a [BBox4],
children: &'a [BVH4Node<'a>],
traversal_code: u8,
},
Leaf {
object_range: (usize, usize),
},
}
impl<'a> BVH4<'a> {
pub fn from_objects<'b, T, F>(
arena: &'a MemArena,
objects: &mut [T],
objects_per_leaf: usize,
bounder: F,
) -> BVH4<'a>
where
F: 'b + Fn(&T) -> &'b [BBox],
{
if objects.len() == 0 {
BVH4 {
root: None,
depth: 0,
node_count: 0,
_bounds: None,
}
} else {
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) };
let node_count = BVH4::construct_from_base(
arena,
&base,
&base.nodes[base.root_node_index()],
fill_node,
);
BVH4 {
root: Some(fill_node),
depth: (base.depth / 2) + 1,
node_count: node_count,
_bounds: {
let range = base.nodes[base.root_node_index()].bounds_range();
Some(arena.copy_slice(&base.bounds[range.0..range.1]))
},
}
}
}
pub fn tree_depth(&self) -> usize {
self.depth
}
pub fn traverse<T, F>(
&self,
rays: &mut RayBatch,
ray_stack: &mut RayStack,
objects: &[T],
mut obj_ray_test: F,
) where
F: FnMut(&T, &mut RayBatch, &mut RayStack),
{
if self.root.is_none() {
return;
}
let mut trav_time: f64 = 0.0;
let mut timer = Timer::new();
let traversal_table =
&TRAVERSAL_TABLE[ray_code(rays.dir_inv_local(ray_stack.next_task_ray_idx(0)))];
// +2 of max depth for root and last child
let mut node_stack = [self.root.unwrap(); (BVH_MAX_DEPTH * 3) + 2];
let mut stack_ptr = 1;
while stack_ptr > 0 {
match node_stack[stack_ptr] {
&BVH4Node::Internal {
bounds,
children,
traversal_code,
} => {
let mut all_hits = Bool4::new();
// Ray testing
ray_stack.pop_do_next_task(children.len(), |ray_idx| {
if rays.is_done(ray_idx) {
([0; 4], 0)
} else {
let hits = lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
rays.orig_local(ray_idx),
rays.dir_inv_local(ray_idx),
rays.max_t(ray_idx),
);
if !hits.all_false() {
all_hits = all_hits | hits;
let mut lanes = [0u8; 4];
let mut lane_count = 0;
for i in 0..children.len() {
if hits.get_n(i) {
lanes[lane_count] = i as u8;
lane_count += 1;
}
}
(lanes, lane_count)
} else {
([0; 4], 0)
}
}
});
// If there were any intersections, create tasks.
if !all_hits.all_false() {
let order_code = traversal_table[traversal_code as usize];
let mut lanes = [0usize; 4];
let mut lane_count = 0;
for i in 0..children.len() {
let inv_i = (children.len() - 1) - i;
let child_i = ((order_code >> (inv_i * 2)) & 3) as usize;
if all_hits.get_n(child_i) {
node_stack[stack_ptr + lane_count] = &children[child_i];
lanes[lane_count] = child_i;
lane_count += 1;
}
}
ray_stack.push_lanes_to_tasks(&lanes[..lane_count]);
stack_ptr += lane_count - 1;
} else {
stack_ptr -= 1;
}
}
&BVH4Node::Leaf { object_range } => {
trav_time += timer.tick() as f64;
// Set up the tasks for each object.
let obj_count = object_range.1 - object_range.0;
for _ in 0..(obj_count - 1) {
ray_stack.duplicate_next_task();
}
// Do the ray tests.
for obj in &objects[object_range.0..object_range.1] {
obj_ray_test(obj, rays, ray_stack);
}
timer.tick();
stack_ptr -= 1;
}
}
}
trav_time += timer.tick() as f64;
ACCEL_TRAV_TIME.with(|att| {
let v = att.get();
att.set(v + trav_time);
});
}
fn construct_from_base(
arena: &'a MemArena,
base: &BVHBase,
node: &BVHBaseNode,
fill_node: &mut BVH4Node<'a>,
) -> usize {
let mut node_count = 0;
match node {
// Create internal node
&BVHBaseNode::Internal {
bounds_range: _,
children_indices,
split_axis,
} => {
let child_l = &base.nodes[children_indices.0];
let child_r = &base.nodes[children_indices.1];
// Prepare convenient access to the stuff we need.
let child_count: usize;
let children; // [Optional, Optional, Optional, Optional]
let split_info: SplitAxes;
match *child_l {
BVHBaseNode::Internal {
children_indices: i_l,
split_axis: s_l,
..
} => {
match *child_r {
BVHBaseNode::Internal {
children_indices: i_r,
split_axis: s_r,
..
} => {
// Four nodes
child_count = 4;
children = [
Some(&base.nodes[i_l.0]),
Some(&base.nodes[i_l.1]),
Some(&base.nodes[i_r.0]),
Some(&base.nodes[i_r.1]),
];
split_info = SplitAxes::Full((split_axis, s_l, s_r));
}
BVHBaseNode::Leaf { .. } => {
// Three nodes with left split
child_count = 3;
children = [
Some(&base.nodes[i_l.0]),
Some(&base.nodes[i_l.1]),
Some(child_r),
None,
];
split_info = SplitAxes::Left((split_axis, s_l));
}
}
}
BVHBaseNode::Leaf { .. } => {
match *child_r {
BVHBaseNode::Internal {
children_indices: i_r,
split_axis: s_r,
..
} => {
// Three nodes with right split
child_count = 3;
children = [
Some(child_l),
Some(&base.nodes[i_r.0]),
Some(&base.nodes[i_r.1]),
None,
];
split_info = SplitAxes::Right((split_axis, s_r));
}
BVHBaseNode::Leaf { .. } => {
// Two nodes
child_count = 2;
children = [Some(child_l), Some(child_r), None, None];
split_info = SplitAxes::TopOnly(split_axis);
}
}
}
}
node_count += child_count;
// Construct bounds
let bounds = {
let bounds_len = children
.iter()
.map(|c| {
if let &Some(n) = c {
let len = n.bounds_range().1 - n.bounds_range().0;
debug_assert!(len >= 1);
len
} else {
0
}
})
.max()
.unwrap();
debug_assert!(bounds_len >= 1);
let bounds =
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
if bounds_len < 2 {
let b1 =
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b2 =
children[1].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b3 =
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
let b4 =
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4);
} else {
for (i, b) in bounds.iter_mut().enumerate() {
let time = i as f32 / (bounds_len - 1) as f32;
let b1 = children[0].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b2 = children[1].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b3 = children[2].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
let b4 = children[3].map_or(BBox::new(), |c| {
let (x, y) = c.bounds_range();
lerp_slice(&base.bounds[x..y], time)
});
*b = BBox4::from_bboxes(b1, b2, b3, b4);
}
}
bounds
};
// Construct child nodes
let child_nodes = unsafe {
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32)
};
for (i, c) in children[0..child_count].iter().enumerate() {
node_count +=
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
}
// Build this node
*fill_node = BVH4Node::Internal {
bounds: bounds,
children: child_nodes,
traversal_code: calc_traversal_code(split_info),
};
}
// Create internal node
&BVHBaseNode::Leaf { object_range, .. } => {
*fill_node = BVH4Node::Leaf {
object_range: object_range,
};
node_count += 1;
}
}
return node_count;
}
}
impl<'a> Boundable for BVH4<'a> {
fn bounds<'b>(&'b self) -> &'b [BBox] {
self._bounds.unwrap_or(&[])
}
}

View File

@ -1,6 +1,5 @@
// mod bvh; // mod bvh;
mod bvh4; mod bvh4;
mod bvh4_simd;
mod bvh_base; mod bvh_base;
mod light_array; mod light_array;
mod light_tree; mod light_tree;
@ -15,7 +14,7 @@ use crate::{
pub use self::{ pub use self::{
// bvh::{BVHNode, BVH}, // bvh::{BVHNode, BVH},
bvh4_simd::{ray_code, BVH4Node, BVH4}, bvh4::{ray_code, BVH4Node, BVH4},
light_array::LightArray, light_array::LightArray,
light_tree::LightTree, light_tree::LightTree,
}; };

View File

@ -265,7 +265,7 @@ impl<'a> Surface for RectangleLight<'a> {
) { ) {
let _ = shader; // Silence 'unused' warning let _ = shader; // Silence 'unused' warning
ray_stack.pop_do_next_task(0, |ray_idx| { ray_stack.pop_do_next_task(|ray_idx| {
let time = rays.time(ray_idx); let time = rays.time(ray_idx);
let orig = rays.orig(ray_idx); let orig = rays.orig(ray_idx);
let dir = rays.dir(ray_idx); let dir = rays.dir(ray_idx);
@ -332,8 +332,6 @@ impl<'a> Surface for RectangleLight<'a> {
} }
} }
} }
([0; 4], 0)
}); });
} }
} }

View File

@ -214,7 +214,7 @@ impl<'a> Surface for SphereLight<'a> {
) { ) {
let _ = shader; // Silence 'unused' warning let _ = shader; // Silence 'unused' warning
ray_stack.pop_do_next_task(0, |ray_idx| { ray_stack.pop_do_next_task(|ray_idx| {
let time = rays.time(ray_idx); let time = rays.time(ray_idx);
// Get the transform space // Get the transform space
@ -242,7 +242,7 @@ impl<'a> Surface for SphereLight<'a> {
let discriminant = (b * b) - (4.0 * a * c); let discriminant = (b * b) - (4.0 * a * c);
if discriminant < 0.0 { if discriminant < 0.0 {
// Discriminant less than zero? No solution => no intersection. // Discriminant less than zero? No solution => no intersection.
return ([0; 4], 0); return;
} }
let discriminant = discriminant.sqrt(); let discriminant = discriminant.sqrt();
@ -268,7 +268,7 @@ impl<'a> Surface for SphereLight<'a> {
// Check our intersection for validity against this ray's extents // Check our intersection for validity against this ray's extents
if t0 > rays.max_t(ray_idx) || t1 <= 0.0 { if t0 > rays.max_t(ray_idx) || t1 <= 0.0 {
// Didn't hit because sphere is entirely outside of ray's extents // Didn't hit because sphere is entirely outside of ray's extents
return ([0; 4], 0); return;
} }
let t = if t0 > 0.0 { let t = if t0 > 0.0 {
@ -278,7 +278,7 @@ impl<'a> Surface for SphereLight<'a> {
} else { } else {
// Didn't hit because ray is entirely within the sphere, and // Didn't hit because ray is entirely within the sphere, and
// therefore doesn't hit its surface. // therefore doesn't hit its surface.
return ([0; 4], 0); return;
}; };
// We hit the sphere, so calculate intersection info. // We hit the sphere, so calculate intersection info.
@ -334,8 +334,6 @@ impl<'a> Surface for SphereLight<'a> {
// Set ray's max t // Set ray's max t
rays.set_max_t(ray_idx, t); rays.set_max_t(ray_idx, t);
} }
([0; 4], 0)
}); });
} }
} }

View File

@ -1,6 +1,6 @@
#![allow(dead_code)] #![allow(dead_code)]
use float4::Float4; use float4::{Bool4, Float4};
use crate::math::{Matrix4x4, Point, Vector}; use crate::math::{Matrix4x4, Point, Vector};
@ -293,11 +293,31 @@ impl RayStack {
} }
/// Pops the next task off the stack, and executes the provided closure for /// Pops the next task off the stack, and executes the provided closure for
/// each ray index in the task. The return value of the closure is the list /// each ray index in the task.
/// of lanes (by index) to add the given ray index back into. pub fn pop_do_next_task<F>(&mut self, mut handle_ray: F)
pub fn pop_do_next_task<F>(&mut self, needed_lanes: usize, mut handle_ray: F)
where where
F: FnMut(usize) -> ([u8; 4], usize), F: FnMut(usize),
{
// Pop the task and do necessary bookkeeping.
let task = self.tasks.pop().unwrap();
let task_range = (task.start_idx, self.lanes[task.lane].end_len);
self.lanes[task.lane].end_len = task.start_idx;
// Execute task.
for i in task_range.0..task_range.1 {
let ray_idx = self.lanes[task.lane].idxs[i];
handle_ray(ray_idx as usize);
}
self.lanes[task.lane].idxs.truncate(task_range.0);
}
/// Pops the next task off the stack, executes the provided closure for
/// each ray index in the task, and pushes the ray indices back onto the
/// indicated lanes.
pub fn pop_do_next_task_and_push_rays<F>(&mut self, needed_lanes: usize, mut handle_ray: F)
where
F: FnMut(usize) -> (Bool4, usize),
{ {
// Prepare lanes. // Prepare lanes.
self.ensure_lane_count(needed_lanes); self.ensure_lane_count(needed_lanes);
@ -311,9 +331,10 @@ impl RayStack {
let mut source_lane_cap = task_range.0; let mut source_lane_cap = task_range.0;
for i in task_range.0..task_range.1 { for i in task_range.0..task_range.1 {
let ray_idx = self.lanes[task.lane].idxs[i]; let ray_idx = self.lanes[task.lane].idxs[i];
let (add_list, list_len) = handle_ray(ray_idx as usize); let (push_mask, c) = handle_ray(ray_idx as usize);
for &l in &add_list[..list_len] { for l in 0..c {
if l == task.lane as u8 { if push_mask.get_n(l) {
if l == task.lane {
self.lanes[l as usize].idxs[source_lane_cap] = ray_idx; self.lanes[l as usize].idxs[source_lane_cap] = ray_idx;
source_lane_cap += 1; source_lane_cap += 1;
} else { } else {
@ -321,6 +342,7 @@ impl RayStack {
} }
} }
} }
}
self.lanes[task.lane].idxs.truncate(source_lane_cap); self.lanes[task.lane].idxs.truncate(source_lane_cap);
} }
} }

View File

@ -157,7 +157,7 @@ impl<'a> Surface for TriangleMesh<'a> {
}; };
// Test each ray against the current triangle. // Test each ray against the current triangle.
ray_stack.pop_do_next_task(0, |ray_idx| { ray_stack.pop_do_next_task(|ray_idx| {
let ray_idx = ray_idx as usize; let ray_idx = ray_idx as usize;
let ray_time = rays.time(ray_idx); let ray_time = rays.time(ray_idx);
@ -275,8 +275,6 @@ impl<'a> Surface for TriangleMesh<'a> {
rays.set_max_t(ray_idx, t); rays.set_max_t(ray_idx, t);
} }
} }
([0; 4], 0)
}); });
}, },
); );

View File

@ -12,6 +12,8 @@ use crate::{
transform_stack::TransformStack, transform_stack::TransformStack,
}; };
use float4::Bool4;
pub struct Tracer<'a> { pub struct Tracer<'a> {
ray_stack: RayStack, ray_stack: RayStack,
inner: TracerInner<'a>, inner: TracerInner<'a>,
@ -96,10 +98,10 @@ impl<'a> TracerInner<'a> {
// Do transforms // Do transforms
// TODO: re-divide rays based on direction (maybe?). // TODO: re-divide rays based on direction (maybe?).
let xforms = self.xform_stack.top(); let xforms = self.xform_stack.top();
ray_stack.pop_do_next_task(2, |ray_idx| { ray_stack.pop_do_next_task_and_push_rays(2, |ray_idx| {
let t = rays.time(ray_idx); let t = rays.time(ray_idx);
rays.update_local(ray_idx, &lerp_slice(xforms, t)); rays.update_local(ray_idx, &lerp_slice(xforms, t));
([0, 1, 0, 0], 2) (Bool4::new(true, true, false, false), 2)
}); });
ray_stack.push_lanes_to_tasks(&[0, 1]); ray_stack.push_lanes_to_tasks(&[0, 1]);
} }
@ -129,16 +131,14 @@ impl<'a> TracerInner<'a> {
// Undo transforms // Undo transforms
let xforms = self.xform_stack.top(); let xforms = self.xform_stack.top();
if !xforms.is_empty() { if !xforms.is_empty() {
ray_stack.pop_do_next_task(0, |ray_idx| { ray_stack.pop_do_next_task(|ray_idx| {
let t = rays.time(ray_idx); let t = rays.time(ray_idx);
rays.update_local(ray_idx, &lerp_slice(xforms, t)); rays.update_local(ray_idx, &lerp_slice(xforms, t));
([0; 4], 0)
}); });
} else { } else {
let ident = Matrix4x4::new(); let ident = Matrix4x4::new();
ray_stack.pop_do_next_task(0, |ray_idx| { ray_stack.pop_do_next_task(|ray_idx| {
rays.update_local(ray_idx, &ident); rays.update_local(ray_idx, &ident);
([0; 4], 0)
}); });
} }
} }

View File

@ -621,7 +621,22 @@ mod x86_64_sse {
impl Bool4 { impl Bool4 {
#[inline(always)] #[inline(always)]
pub fn new() -> Bool4 { pub fn new(a: bool, b: bool, c: bool, d: bool) -> Bool4 {
use std::arch::x86_64::_mm_set_ps;
Bool4 {
data: unsafe {
_mm_set_ps(
if d { 1.0 } else { 0.0 },
if c { 1.0 } else { 0.0 },
if b { 1.0 } else { 0.0 },
if a { 1.0 } else { 0.0 },
)
},
}
}
#[inline(always)]
pub fn new_false() -> Bool4 {
use std::arch::x86_64::_mm_set1_ps; use std::arch::x86_64::_mm_set1_ps;
Bool4 { Bool4 {
data: unsafe { _mm_set1_ps(0.0) }, data: unsafe { _mm_set1_ps(0.0) },
@ -667,7 +682,8 @@ mod x86_64_sse {
/// ///
/// This is the `OR` operation on all the contained bools. If even /// This is the `OR` operation on all the contained bools. If even
/// one bool is true, this returns true. /// one bool is true, this returns true.
pub fn all_false(&self) -> bool { #[inline(always)]
pub fn is_all_false(&self) -> bool {
let a = unsafe { *(&self.data as *const __m128 as *const u128) }; let a = unsafe { *(&self.data as *const __m128 as *const u128) };
a == 0 a == 0
} }