Remove non-SIMD BVH4, and keep more bool calculations in SIMD format.
This commit is contained in:
parent
c5d23592b9
commit
b09f9684d1
|
@ -1,13 +1,17 @@
|
|||
//! This BVH4 implementation is based on the ideas from the paper
|
||||
//! "Efficient Ray Tracing Kernels for Modern CPU Architectures"
|
||||
//! by Fuetterling et al.
|
||||
|
||||
#![allow(dead_code)]
|
||||
|
||||
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
|
||||
use math3d::Vector;
|
||||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
bbox::BBox,
|
||||
bbox4::BBox4,
|
||||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::Vector,
|
||||
ray::{RayBatch, RayStack},
|
||||
timer::Timer,
|
||||
};
|
||||
|
@ -17,6 +21,9 @@ use super::{
|
|||
ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME,
|
||||
};
|
||||
|
||||
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
|
||||
use float4::Bool4;
|
||||
|
||||
pub fn ray_code(dir: Vector) -> usize {
|
||||
let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0];
|
||||
ray_sign_is_neg[0] as usize
|
||||
|
@ -28,20 +35,19 @@ pub fn ray_code(dir: Vector) -> usize {
|
|||
pub struct BVH4<'a> {
|
||||
root: Option<&'a BVH4Node<'a>>,
|
||||
depth: usize,
|
||||
node_count: usize,
|
||||
_bounds: Option<&'a [BBox]>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum BVH4Node<'a> {
|
||||
Inner {
|
||||
traversal_code: u8,
|
||||
bounds_start: &'a BBox,
|
||||
bounds_len: u16,
|
||||
Internal {
|
||||
bounds: &'a [BBox4],
|
||||
children: &'a [BVH4Node<'a>],
|
||||
traversal_code: u8,
|
||||
},
|
||||
|
||||
Leaf {
|
||||
bounds_start: &'a BBox,
|
||||
bounds_len: u16,
|
||||
object_range: (usize, usize),
|
||||
},
|
||||
}
|
||||
|
@ -56,19 +62,32 @@ impl<'a> BVH4<'a> {
|
|||
where
|
||||
F: 'b + Fn(&T) -> &'b [BBox],
|
||||
{
|
||||
if objects.is_empty() {
|
||||
if objects.len() == 0 {
|
||||
BVH4 {
|
||||
root: None,
|
||||
depth: 0,
|
||||
node_count: 0,
|
||||
_bounds: None,
|
||||
}
|
||||
} else {
|
||||
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
|
||||
|
||||
let root = unsafe { arena.alloc_uninitialized::<BVH4Node>() };
|
||||
BVH4::construct_from_base(arena, &base, base.root_node_index(), root);
|
||||
let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) };
|
||||
let node_count = BVH4::construct_from_base(
|
||||
arena,
|
||||
&base,
|
||||
&base.nodes[base.root_node_index()],
|
||||
fill_node,
|
||||
);
|
||||
|
||||
BVH4 {
|
||||
root: Some(root),
|
||||
depth: base.depth,
|
||||
root: Some(fill_node),
|
||||
depth: (base.depth / 2) + 1,
|
||||
node_count: node_count,
|
||||
_bounds: {
|
||||
let range = base.nodes[base.root_node_index()].bounds_range();
|
||||
Some(arena.copy_slice(&base.bounds[range.0..range.1]))
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -103,118 +122,64 @@ impl<'a> BVH4<'a> {
|
|||
|
||||
while stack_ptr > 0 {
|
||||
node_tests += ray_stack.ray_count_in_next_task() as u64;
|
||||
match *node_stack[stack_ptr] {
|
||||
BVH4Node::Inner {
|
||||
traversal_code,
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
match node_stack[stack_ptr] {
|
||||
&BVH4Node::Internal {
|
||||
bounds,
|
||||
children,
|
||||
traversal_code,
|
||||
} => {
|
||||
// Test rays against bbox.
|
||||
let bounds =
|
||||
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
|
||||
let mut all_hits = Bool4::new_false();
|
||||
|
||||
let mut hit_count = 0;
|
||||
ray_stack.pop_do_next_task(children.len(), |ray_idx| {
|
||||
let hit = (!rays.is_done(ray_idx))
|
||||
&& lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
|
||||
// Ray testing
|
||||
ray_stack.pop_do_next_task_and_push_rays(children.len(), |ray_idx| {
|
||||
if rays.is_done(ray_idx) {
|
||||
(Bool4::new_false(), 0)
|
||||
} else {
|
||||
let hits = lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
|
||||
rays.orig_local(ray_idx),
|
||||
rays.dir_inv_local(ray_idx),
|
||||
rays.max_t(ray_idx),
|
||||
);
|
||||
|
||||
if hit {
|
||||
hit_count += 1;
|
||||
([0, 1, 2, 3], children.len())
|
||||
} else {
|
||||
([0; 4], 0)
|
||||
all_hits = all_hits | hits;
|
||||
(hits, children.len())
|
||||
}
|
||||
});
|
||||
|
||||
// If there were any intersections, create tasks.
|
||||
if hit_count > 0 {
|
||||
if !all_hits.is_all_false() {
|
||||
let order_code = traversal_table[traversal_code as usize];
|
||||
match children.len() {
|
||||
4 => {
|
||||
let i4 = ((order_code >> 6) & 0b11) as usize;
|
||||
let i3 = ((order_code >> 4) & 0b11) as usize;
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
|
||||
ray_stack.push_lanes_to_tasks(&[i4, i3, i2, i1]);
|
||||
|
||||
node_stack[stack_ptr] = &children[i4];
|
||||
node_stack[stack_ptr + 1] = &children[i3];
|
||||
node_stack[stack_ptr + 2] = &children[i2];
|
||||
node_stack[stack_ptr + 3] = &children[i1];
|
||||
|
||||
stack_ptr += 3;
|
||||
let mut lanes = [0usize; 4];
|
||||
let mut lane_count = 0;
|
||||
for i in 0..children.len() {
|
||||
let inv_i = (children.len() - 1) - i;
|
||||
let child_i = ((order_code >> (inv_i * 2)) & 3) as usize;
|
||||
if all_hits.get_n(child_i) {
|
||||
node_stack[stack_ptr + lane_count] = &children[child_i];
|
||||
lanes[lane_count] = child_i;
|
||||
lane_count += 1;
|
||||
}
|
||||
3 => {
|
||||
let i3 = ((order_code >> 4) & 0b11) as usize;
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
|
||||
ray_stack.push_lanes_to_tasks(&[i3, i2, i1]);
|
||||
|
||||
node_stack[stack_ptr] = &children[i3];
|
||||
node_stack[stack_ptr + 1] = &children[i2];
|
||||
node_stack[stack_ptr + 2] = &children[i1];
|
||||
|
||||
stack_ptr += 2;
|
||||
}
|
||||
2 => {
|
||||
let i2 = ((order_code >> 2) & 0b11) as usize;
|
||||
let i1 = (order_code & 0b11) as usize;
|
||||
|
||||
ray_stack.push_lanes_to_tasks(&[i2, i1]);
|
||||
|
||||
node_stack[stack_ptr] = &children[i2];
|
||||
node_stack[stack_ptr + 1] = &children[i1];
|
||||
|
||||
stack_ptr += 1;
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
ray_stack.push_lanes_to_tasks(&lanes[..lane_count]);
|
||||
stack_ptr += lane_count - 1;
|
||||
} else {
|
||||
stack_ptr -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
BVH4Node::Leaf {
|
||||
object_range,
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
} => {
|
||||
// Test rays against bounds.
|
||||
let bounds =
|
||||
unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) };
|
||||
let object_count = object_range.1 - object_range.0;
|
||||
let mut hit_count = 0;
|
||||
|
||||
ray_stack.pop_do_next_task(object_count, |ray_idx| {
|
||||
let hit = (!rays.is_done(ray_idx))
|
||||
&& lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
|
||||
rays.orig_local(ray_idx),
|
||||
rays.dir_inv_local(ray_idx),
|
||||
rays.max_t(ray_idx),
|
||||
);
|
||||
if hit {
|
||||
hit_count += 1;
|
||||
([0, 1, 2, 3], object_count)
|
||||
} else {
|
||||
([0; 4], 0)
|
||||
}
|
||||
});
|
||||
|
||||
&BVH4Node::Leaf { object_range } => {
|
||||
trav_time += timer.tick() as f64;
|
||||
|
||||
if hit_count > 0 {
|
||||
ray_stack.push_lanes_to_tasks(&[0, 1, 2, 3, 4, 5, 6, 7][..object_count]);
|
||||
// Set up the tasks for each object.
|
||||
let obj_count = object_range.1 - object_range.0;
|
||||
for _ in 0..(obj_count - 1) {
|
||||
ray_stack.duplicate_next_task();
|
||||
}
|
||||
|
||||
// Do the ray tests.
|
||||
for obj in &objects[object_range.0..object_range.1] {
|
||||
obj_ray_test(obj, rays, ray_stack);
|
||||
}
|
||||
}
|
||||
|
||||
timer.tick();
|
||||
|
||||
|
@ -237,12 +202,15 @@ impl<'a> BVH4<'a> {
|
|||
fn construct_from_base(
|
||||
arena: &'a MemArena,
|
||||
base: &BVHBase,
|
||||
node_index: usize,
|
||||
node_mem: &mut BVH4Node<'a>,
|
||||
) {
|
||||
match base.nodes[node_index] {
|
||||
BVHBaseNode::Internal {
|
||||
bounds_range,
|
||||
node: &BVHBaseNode,
|
||||
fill_node: &mut BVH4Node<'a>,
|
||||
) -> usize {
|
||||
let mut node_count = 0;
|
||||
|
||||
match node {
|
||||
// Create internal node
|
||||
&BVHBaseNode::Internal {
|
||||
bounds_range: _,
|
||||
children_indices,
|
||||
split_axis,
|
||||
} => {
|
||||
|
@ -251,7 +219,7 @@ impl<'a> BVH4<'a> {
|
|||
|
||||
// Prepare convenient access to the stuff we need.
|
||||
let child_count: usize;
|
||||
let child_indices: [usize; 4];
|
||||
let children; // [Optional, Optional, Optional, Optional]
|
||||
let split_info: SplitAxes;
|
||||
match *child_l {
|
||||
BVHBaseNode::Internal {
|
||||
|
@ -267,13 +235,23 @@ impl<'a> BVH4<'a> {
|
|||
} => {
|
||||
// Four nodes
|
||||
child_count = 4;
|
||||
child_indices = [i_l.0, i_l.1, i_r.0, i_r.1];
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
];
|
||||
split_info = SplitAxes::Full((split_axis, s_l, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Three nodes with left split
|
||||
child_count = 3;
|
||||
child_indices = [i_l.0, i_l.1, children_indices.1, 0];
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(child_r),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Left((split_axis, s_l));
|
||||
}
|
||||
}
|
||||
|
@ -287,76 +265,112 @@ impl<'a> BVH4<'a> {
|
|||
} => {
|
||||
// Three nodes with right split
|
||||
child_count = 3;
|
||||
child_indices = [children_indices.0, i_r.0, i_r.1, 0];
|
||||
children = [
|
||||
Some(child_l),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Right((split_axis, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Two nodes
|
||||
child_count = 2;
|
||||
child_indices = [children_indices.0, children_indices.1, 0, 0];
|
||||
children = [Some(child_l), Some(child_r), None, None];
|
||||
split_info = SplitAxes::TopOnly(split_axis);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy bounds
|
||||
let bounds = arena
|
||||
.copy_slice_with_alignment(&base.bounds[bounds_range.0..bounds_range.1], 32);
|
||||
node_count += child_count;
|
||||
|
||||
// Build children
|
||||
let children_mem = unsafe {
|
||||
// Construct bounds
|
||||
let bounds = {
|
||||
let bounds_len = children
|
||||
.iter()
|
||||
.map(|c| {
|
||||
if let &Some(n) = c {
|
||||
let len = n.bounds_range().1 - n.bounds_range().0;
|
||||
debug_assert!(len >= 1);
|
||||
len
|
||||
} else {
|
||||
0
|
||||
}
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
debug_assert!(bounds_len >= 1);
|
||||
let bounds =
|
||||
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
|
||||
if bounds_len < 2 {
|
||||
let b1 =
|
||||
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b2 =
|
||||
children[1].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b3 =
|
||||
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b4 =
|
||||
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
} else {
|
||||
for (i, b) in bounds.iter_mut().enumerate() {
|
||||
let time = i as f32 / (bounds_len - 1) as f32;
|
||||
|
||||
let b1 = children[0].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b2 = children[1].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b3 = children[2].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b4 = children[3].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
*b = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
}
|
||||
}
|
||||
bounds
|
||||
};
|
||||
|
||||
// Construct child nodes
|
||||
let child_nodes = unsafe {
|
||||
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32)
|
||||
};
|
||||
for i in 0..child_count {
|
||||
BVH4::construct_from_base(arena, base, child_indices[i], &mut children_mem[i]);
|
||||
for (i, c) in children[0..child_count].iter().enumerate() {
|
||||
node_count +=
|
||||
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
|
||||
}
|
||||
|
||||
// Fill in node
|
||||
*node_mem = BVH4Node::Inner {
|
||||
// Build this node
|
||||
*fill_node = BVH4Node::Internal {
|
||||
bounds: bounds,
|
||||
children: child_nodes,
|
||||
traversal_code: calc_traversal_code(split_info),
|
||||
bounds_start: &bounds[0],
|
||||
bounds_len: bounds.len() as u16,
|
||||
children: children_mem,
|
||||
};
|
||||
}
|
||||
|
||||
BVHBaseNode::Leaf {
|
||||
bounds_range,
|
||||
object_range,
|
||||
} => {
|
||||
let bounds = arena.copy_slice(&base.bounds[bounds_range.0..bounds_range.1]);
|
||||
|
||||
*node_mem = BVH4Node::Leaf {
|
||||
bounds_start: &bounds[0],
|
||||
bounds_len: bounds.len() as u16,
|
||||
// Create internal node
|
||||
&BVHBaseNode::Leaf { object_range, .. } => {
|
||||
*fill_node = BVH4Node::Leaf {
|
||||
object_range: object_range,
|
||||
};
|
||||
}
|
||||
}
|
||||
node_count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
lazy_static! {
|
||||
static ref DEGENERATE_BOUNDS: [BBox; 1] = [BBox::new()];
|
||||
return node_count;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for BVH4<'a> {
|
||||
fn bounds(&self) -> &[BBox] {
|
||||
match self.root {
|
||||
None => &DEGENERATE_BOUNDS[..],
|
||||
Some(root) => match *root {
|
||||
BVH4Node::Inner {
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
..
|
||||
}
|
||||
| BVH4Node::Leaf {
|
||||
bounds_start,
|
||||
bounds_len,
|
||||
..
|
||||
} => unsafe { std::slice::from_raw_parts(bounds_start, bounds_len as usize) },
|
||||
},
|
||||
}
|
||||
fn bounds<'b>(&'b self) -> &'b [BBox] {
|
||||
self._bounds.unwrap_or(&[])
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,386 +0,0 @@
|
|||
//! This BVH4 implementation pulls a lot of ideas from the paper
|
||||
//! "Efficient Ray Tracing Kernels for Modern CPU Architectures"
|
||||
//! by Fuetterling et al.
|
||||
//!
|
||||
//! Specifically, the table-based traversal order approach they
|
||||
//! propose is largely followed by this implementation.
|
||||
|
||||
#![allow(dead_code)]
|
||||
|
||||
use mem_arena::MemArena;
|
||||
|
||||
use crate::{
|
||||
bbox::BBox,
|
||||
bbox4::BBox4,
|
||||
boundable::Boundable,
|
||||
lerp::lerp_slice,
|
||||
math::Vector,
|
||||
ray::{RayBatch, RayStack},
|
||||
timer::Timer,
|
||||
};
|
||||
|
||||
use super::{
|
||||
bvh_base::{BVHBase, BVHBaseNode, BVH_MAX_DEPTH},
|
||||
ACCEL_NODE_RAY_TESTS, ACCEL_TRAV_TIME,
|
||||
};
|
||||
|
||||
use bvh_order::{calc_traversal_code, SplitAxes, TRAVERSAL_TABLE};
|
||||
use float4::Bool4;
|
||||
|
||||
pub fn ray_code(dir: Vector) -> usize {
|
||||
let ray_sign_is_neg = [dir.x() < 0.0, dir.y() < 0.0, dir.z() < 0.0];
|
||||
ray_sign_is_neg[0] as usize
|
||||
+ ((ray_sign_is_neg[1] as usize) << 1)
|
||||
+ ((ray_sign_is_neg[2] as usize) << 2)
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct BVH4<'a> {
|
||||
root: Option<&'a BVH4Node<'a>>,
|
||||
depth: usize,
|
||||
node_count: usize,
|
||||
_bounds: Option<&'a [BBox]>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum BVH4Node<'a> {
|
||||
Internal {
|
||||
bounds: &'a [BBox4],
|
||||
children: &'a [BVH4Node<'a>],
|
||||
traversal_code: u8,
|
||||
},
|
||||
|
||||
Leaf {
|
||||
object_range: (usize, usize),
|
||||
},
|
||||
}
|
||||
|
||||
impl<'a> BVH4<'a> {
|
||||
pub fn from_objects<'b, T, F>(
|
||||
arena: &'a MemArena,
|
||||
objects: &mut [T],
|
||||
objects_per_leaf: usize,
|
||||
bounder: F,
|
||||
) -> BVH4<'a>
|
||||
where
|
||||
F: 'b + Fn(&T) -> &'b [BBox],
|
||||
{
|
||||
if objects.len() == 0 {
|
||||
BVH4 {
|
||||
root: None,
|
||||
depth: 0,
|
||||
node_count: 0,
|
||||
_bounds: None,
|
||||
}
|
||||
} else {
|
||||
let base = BVHBase::from_objects(objects, objects_per_leaf, bounder);
|
||||
|
||||
let fill_node = unsafe { arena.alloc_uninitialized_with_alignment::<BVH4Node>(32) };
|
||||
let node_count = BVH4::construct_from_base(
|
||||
arena,
|
||||
&base,
|
||||
&base.nodes[base.root_node_index()],
|
||||
fill_node,
|
||||
);
|
||||
|
||||
BVH4 {
|
||||
root: Some(fill_node),
|
||||
depth: (base.depth / 2) + 1,
|
||||
node_count: node_count,
|
||||
_bounds: {
|
||||
let range = base.nodes[base.root_node_index()].bounds_range();
|
||||
Some(arena.copy_slice(&base.bounds[range.0..range.1]))
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tree_depth(&self) -> usize {
|
||||
self.depth
|
||||
}
|
||||
|
||||
pub fn traverse<T, F>(
|
||||
&self,
|
||||
rays: &mut RayBatch,
|
||||
ray_stack: &mut RayStack,
|
||||
objects: &[T],
|
||||
mut obj_ray_test: F,
|
||||
) where
|
||||
F: FnMut(&T, &mut RayBatch, &mut RayStack),
|
||||
{
|
||||
if self.root.is_none() {
|
||||
return;
|
||||
}
|
||||
|
||||
let mut trav_time: f64 = 0.0;
|
||||
let mut timer = Timer::new();
|
||||
|
||||
let traversal_table =
|
||||
&TRAVERSAL_TABLE[ray_code(rays.dir_inv_local(ray_stack.next_task_ray_idx(0)))];
|
||||
|
||||
// +2 of max depth for root and last child
|
||||
let mut node_stack = [self.root.unwrap(); (BVH_MAX_DEPTH * 3) + 2];
|
||||
let mut stack_ptr = 1;
|
||||
|
||||
while stack_ptr > 0 {
|
||||
match node_stack[stack_ptr] {
|
||||
&BVH4Node::Internal {
|
||||
bounds,
|
||||
children,
|
||||
traversal_code,
|
||||
} => {
|
||||
let mut all_hits = Bool4::new();
|
||||
|
||||
// Ray testing
|
||||
ray_stack.pop_do_next_task(children.len(), |ray_idx| {
|
||||
if rays.is_done(ray_idx) {
|
||||
([0; 4], 0)
|
||||
} else {
|
||||
let hits = lerp_slice(bounds, rays.time(ray_idx)).intersect_ray(
|
||||
rays.orig_local(ray_idx),
|
||||
rays.dir_inv_local(ray_idx),
|
||||
rays.max_t(ray_idx),
|
||||
);
|
||||
|
||||
if !hits.all_false() {
|
||||
all_hits = all_hits | hits;
|
||||
let mut lanes = [0u8; 4];
|
||||
let mut lane_count = 0;
|
||||
for i in 0..children.len() {
|
||||
if hits.get_n(i) {
|
||||
lanes[lane_count] = i as u8;
|
||||
lane_count += 1;
|
||||
}
|
||||
}
|
||||
(lanes, lane_count)
|
||||
} else {
|
||||
([0; 4], 0)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// If there were any intersections, create tasks.
|
||||
if !all_hits.all_false() {
|
||||
let order_code = traversal_table[traversal_code as usize];
|
||||
let mut lanes = [0usize; 4];
|
||||
let mut lane_count = 0;
|
||||
for i in 0..children.len() {
|
||||
let inv_i = (children.len() - 1) - i;
|
||||
let child_i = ((order_code >> (inv_i * 2)) & 3) as usize;
|
||||
if all_hits.get_n(child_i) {
|
||||
node_stack[stack_ptr + lane_count] = &children[child_i];
|
||||
lanes[lane_count] = child_i;
|
||||
lane_count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
ray_stack.push_lanes_to_tasks(&lanes[..lane_count]);
|
||||
stack_ptr += lane_count - 1;
|
||||
} else {
|
||||
stack_ptr -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
&BVH4Node::Leaf { object_range } => {
|
||||
trav_time += timer.tick() as f64;
|
||||
|
||||
// Set up the tasks for each object.
|
||||
let obj_count = object_range.1 - object_range.0;
|
||||
for _ in 0..(obj_count - 1) {
|
||||
ray_stack.duplicate_next_task();
|
||||
}
|
||||
|
||||
// Do the ray tests.
|
||||
for obj in &objects[object_range.0..object_range.1] {
|
||||
obj_ray_test(obj, rays, ray_stack);
|
||||
}
|
||||
|
||||
timer.tick();
|
||||
|
||||
stack_ptr -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
trav_time += timer.tick() as f64;
|
||||
ACCEL_TRAV_TIME.with(|att| {
|
||||
let v = att.get();
|
||||
att.set(v + trav_time);
|
||||
});
|
||||
}
|
||||
|
||||
fn construct_from_base(
|
||||
arena: &'a MemArena,
|
||||
base: &BVHBase,
|
||||
node: &BVHBaseNode,
|
||||
fill_node: &mut BVH4Node<'a>,
|
||||
) -> usize {
|
||||
let mut node_count = 0;
|
||||
|
||||
match node {
|
||||
// Create internal node
|
||||
&BVHBaseNode::Internal {
|
||||
bounds_range: _,
|
||||
children_indices,
|
||||
split_axis,
|
||||
} => {
|
||||
let child_l = &base.nodes[children_indices.0];
|
||||
let child_r = &base.nodes[children_indices.1];
|
||||
|
||||
// Prepare convenient access to the stuff we need.
|
||||
let child_count: usize;
|
||||
let children; // [Optional, Optional, Optional, Optional]
|
||||
let split_info: SplitAxes;
|
||||
match *child_l {
|
||||
BVHBaseNode::Internal {
|
||||
children_indices: i_l,
|
||||
split_axis: s_l,
|
||||
..
|
||||
} => {
|
||||
match *child_r {
|
||||
BVHBaseNode::Internal {
|
||||
children_indices: i_r,
|
||||
split_axis: s_r,
|
||||
..
|
||||
} => {
|
||||
// Four nodes
|
||||
child_count = 4;
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
];
|
||||
split_info = SplitAxes::Full((split_axis, s_l, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Three nodes with left split
|
||||
child_count = 3;
|
||||
children = [
|
||||
Some(&base.nodes[i_l.0]),
|
||||
Some(&base.nodes[i_l.1]),
|
||||
Some(child_r),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Left((split_axis, s_l));
|
||||
}
|
||||
}
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
match *child_r {
|
||||
BVHBaseNode::Internal {
|
||||
children_indices: i_r,
|
||||
split_axis: s_r,
|
||||
..
|
||||
} => {
|
||||
// Three nodes with right split
|
||||
child_count = 3;
|
||||
children = [
|
||||
Some(child_l),
|
||||
Some(&base.nodes[i_r.0]),
|
||||
Some(&base.nodes[i_r.1]),
|
||||
None,
|
||||
];
|
||||
split_info = SplitAxes::Right((split_axis, s_r));
|
||||
}
|
||||
BVHBaseNode::Leaf { .. } => {
|
||||
// Two nodes
|
||||
child_count = 2;
|
||||
children = [Some(child_l), Some(child_r), None, None];
|
||||
split_info = SplitAxes::TopOnly(split_axis);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node_count += child_count;
|
||||
|
||||
// Construct bounds
|
||||
let bounds = {
|
||||
let bounds_len = children
|
||||
.iter()
|
||||
.map(|c| {
|
||||
if let &Some(n) = c {
|
||||
let len = n.bounds_range().1 - n.bounds_range().0;
|
||||
debug_assert!(len >= 1);
|
||||
len
|
||||
} else {
|
||||
0
|
||||
}
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
debug_assert!(bounds_len >= 1);
|
||||
let bounds =
|
||||
unsafe { arena.alloc_array_uninitialized_with_alignment(bounds_len, 32) };
|
||||
if bounds_len < 2 {
|
||||
let b1 =
|
||||
children[0].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b2 =
|
||||
children[1].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b3 =
|
||||
children[2].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
let b4 =
|
||||
children[3].map_or(BBox::new(), |c| base.bounds[c.bounds_range().0]);
|
||||
bounds[0] = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
} else {
|
||||
for (i, b) in bounds.iter_mut().enumerate() {
|
||||
let time = i as f32 / (bounds_len - 1) as f32;
|
||||
|
||||
let b1 = children[0].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b2 = children[1].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b3 = children[2].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
let b4 = children[3].map_or(BBox::new(), |c| {
|
||||
let (x, y) = c.bounds_range();
|
||||
lerp_slice(&base.bounds[x..y], time)
|
||||
});
|
||||
*b = BBox4::from_bboxes(b1, b2, b3, b4);
|
||||
}
|
||||
}
|
||||
bounds
|
||||
};
|
||||
|
||||
// Construct child nodes
|
||||
let child_nodes = unsafe {
|
||||
arena.alloc_array_uninitialized_with_alignment::<BVH4Node>(child_count, 32)
|
||||
};
|
||||
for (i, c) in children[0..child_count].iter().enumerate() {
|
||||
node_count +=
|
||||
BVH4::construct_from_base(arena, base, c.unwrap(), &mut child_nodes[i]);
|
||||
}
|
||||
|
||||
// Build this node
|
||||
*fill_node = BVH4Node::Internal {
|
||||
bounds: bounds,
|
||||
children: child_nodes,
|
||||
traversal_code: calc_traversal_code(split_info),
|
||||
};
|
||||
}
|
||||
|
||||
// Create internal node
|
||||
&BVHBaseNode::Leaf { object_range, .. } => {
|
||||
*fill_node = BVH4Node::Leaf {
|
||||
object_range: object_range,
|
||||
};
|
||||
node_count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
return node_count;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Boundable for BVH4<'a> {
|
||||
fn bounds<'b>(&'b self) -> &'b [BBox] {
|
||||
self._bounds.unwrap_or(&[])
|
||||
}
|
||||
}
|
|
@ -1,6 +1,5 @@
|
|||
// mod bvh;
|
||||
mod bvh4;
|
||||
mod bvh4_simd;
|
||||
mod bvh_base;
|
||||
mod light_array;
|
||||
mod light_tree;
|
||||
|
@ -15,7 +14,7 @@ use crate::{
|
|||
|
||||
pub use self::{
|
||||
// bvh::{BVHNode, BVH},
|
||||
bvh4_simd::{ray_code, BVH4Node, BVH4},
|
||||
bvh4::{ray_code, BVH4Node, BVH4},
|
||||
light_array::LightArray,
|
||||
light_tree::LightTree,
|
||||
};
|
||||
|
|
|
@ -265,7 +265,7 @@ impl<'a> Surface for RectangleLight<'a> {
|
|||
) {
|
||||
let _ = shader; // Silence 'unused' warning
|
||||
|
||||
ray_stack.pop_do_next_task(0, |ray_idx| {
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let time = rays.time(ray_idx);
|
||||
let orig = rays.orig(ray_idx);
|
||||
let dir = rays.dir(ray_idx);
|
||||
|
@ -332,8 +332,6 @@ impl<'a> Surface for RectangleLight<'a> {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
([0; 4], 0)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -214,7 +214,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
) {
|
||||
let _ = shader; // Silence 'unused' warning
|
||||
|
||||
ray_stack.pop_do_next_task(0, |ray_idx| {
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let time = rays.time(ray_idx);
|
||||
|
||||
// Get the transform space
|
||||
|
@ -242,7 +242,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
let discriminant = (b * b) - (4.0 * a * c);
|
||||
if discriminant < 0.0 {
|
||||
// Discriminant less than zero? No solution => no intersection.
|
||||
return ([0; 4], 0);
|
||||
return;
|
||||
}
|
||||
let discriminant = discriminant.sqrt();
|
||||
|
||||
|
@ -268,7 +268,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
// Check our intersection for validity against this ray's extents
|
||||
if t0 > rays.max_t(ray_idx) || t1 <= 0.0 {
|
||||
// Didn't hit because sphere is entirely outside of ray's extents
|
||||
return ([0; 4], 0);
|
||||
return;
|
||||
}
|
||||
|
||||
let t = if t0 > 0.0 {
|
||||
|
@ -278,7 +278,7 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
} else {
|
||||
// Didn't hit because ray is entirely within the sphere, and
|
||||
// therefore doesn't hit its surface.
|
||||
return ([0; 4], 0);
|
||||
return;
|
||||
};
|
||||
|
||||
// We hit the sphere, so calculate intersection info.
|
||||
|
@ -334,8 +334,6 @@ impl<'a> Surface for SphereLight<'a> {
|
|||
// Set ray's max t
|
||||
rays.set_max_t(ray_idx, t);
|
||||
}
|
||||
|
||||
([0; 4], 0)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
38
src/ray.rs
38
src/ray.rs
|
@ -1,6 +1,6 @@
|
|||
#![allow(dead_code)]
|
||||
|
||||
use float4::Float4;
|
||||
use float4::{Bool4, Float4};
|
||||
|
||||
use crate::math::{Matrix4x4, Point, Vector};
|
||||
|
||||
|
@ -293,11 +293,31 @@ impl RayStack {
|
|||
}
|
||||
|
||||
/// Pops the next task off the stack, and executes the provided closure for
|
||||
/// each ray index in the task. The return value of the closure is the list
|
||||
/// of lanes (by index) to add the given ray index back into.
|
||||
pub fn pop_do_next_task<F>(&mut self, needed_lanes: usize, mut handle_ray: F)
|
||||
/// each ray index in the task.
|
||||
pub fn pop_do_next_task<F>(&mut self, mut handle_ray: F)
|
||||
where
|
||||
F: FnMut(usize) -> ([u8; 4], usize),
|
||||
F: FnMut(usize),
|
||||
{
|
||||
// Pop the task and do necessary bookkeeping.
|
||||
let task = self.tasks.pop().unwrap();
|
||||
let task_range = (task.start_idx, self.lanes[task.lane].end_len);
|
||||
self.lanes[task.lane].end_len = task.start_idx;
|
||||
|
||||
// Execute task.
|
||||
for i in task_range.0..task_range.1 {
|
||||
let ray_idx = self.lanes[task.lane].idxs[i];
|
||||
handle_ray(ray_idx as usize);
|
||||
}
|
||||
|
||||
self.lanes[task.lane].idxs.truncate(task_range.0);
|
||||
}
|
||||
|
||||
/// Pops the next task off the stack, executes the provided closure for
|
||||
/// each ray index in the task, and pushes the ray indices back onto the
|
||||
/// indicated lanes.
|
||||
pub fn pop_do_next_task_and_push_rays<F>(&mut self, needed_lanes: usize, mut handle_ray: F)
|
||||
where
|
||||
F: FnMut(usize) -> (Bool4, usize),
|
||||
{
|
||||
// Prepare lanes.
|
||||
self.ensure_lane_count(needed_lanes);
|
||||
|
@ -311,9 +331,10 @@ impl RayStack {
|
|||
let mut source_lane_cap = task_range.0;
|
||||
for i in task_range.0..task_range.1 {
|
||||
let ray_idx = self.lanes[task.lane].idxs[i];
|
||||
let (add_list, list_len) = handle_ray(ray_idx as usize);
|
||||
for &l in &add_list[..list_len] {
|
||||
if l == task.lane as u8 {
|
||||
let (push_mask, c) = handle_ray(ray_idx as usize);
|
||||
for l in 0..c {
|
||||
if push_mask.get_n(l) {
|
||||
if l == task.lane {
|
||||
self.lanes[l as usize].idxs[source_lane_cap] = ray_idx;
|
||||
source_lane_cap += 1;
|
||||
} else {
|
||||
|
@ -321,6 +342,7 @@ impl RayStack {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
self.lanes[task.lane].idxs.truncate(source_lane_cap);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -157,7 +157,7 @@ impl<'a> Surface for TriangleMesh<'a> {
|
|||
};
|
||||
|
||||
// Test each ray against the current triangle.
|
||||
ray_stack.pop_do_next_task(0, |ray_idx| {
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let ray_idx = ray_idx as usize;
|
||||
let ray_time = rays.time(ray_idx);
|
||||
|
||||
|
@ -275,8 +275,6 @@ impl<'a> Surface for TriangleMesh<'a> {
|
|||
rays.set_max_t(ray_idx, t);
|
||||
}
|
||||
}
|
||||
|
||||
([0; 4], 0)
|
||||
});
|
||||
},
|
||||
);
|
||||
|
|
|
@ -12,6 +12,8 @@ use crate::{
|
|||
transform_stack::TransformStack,
|
||||
};
|
||||
|
||||
use float4::Bool4;
|
||||
|
||||
pub struct Tracer<'a> {
|
||||
ray_stack: RayStack,
|
||||
inner: TracerInner<'a>,
|
||||
|
@ -96,10 +98,10 @@ impl<'a> TracerInner<'a> {
|
|||
// Do transforms
|
||||
// TODO: re-divide rays based on direction (maybe?).
|
||||
let xforms = self.xform_stack.top();
|
||||
ray_stack.pop_do_next_task(2, |ray_idx| {
|
||||
ray_stack.pop_do_next_task_and_push_rays(2, |ray_idx| {
|
||||
let t = rays.time(ray_idx);
|
||||
rays.update_local(ray_idx, &lerp_slice(xforms, t));
|
||||
([0, 1, 0, 0], 2)
|
||||
(Bool4::new(true, true, false, false), 2)
|
||||
});
|
||||
ray_stack.push_lanes_to_tasks(&[0, 1]);
|
||||
}
|
||||
|
@ -129,16 +131,14 @@ impl<'a> TracerInner<'a> {
|
|||
// Undo transforms
|
||||
let xforms = self.xform_stack.top();
|
||||
if !xforms.is_empty() {
|
||||
ray_stack.pop_do_next_task(0, |ray_idx| {
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
let t = rays.time(ray_idx);
|
||||
rays.update_local(ray_idx, &lerp_slice(xforms, t));
|
||||
([0; 4], 0)
|
||||
});
|
||||
} else {
|
||||
let ident = Matrix4x4::new();
|
||||
ray_stack.pop_do_next_task(0, |ray_idx| {
|
||||
ray_stack.pop_do_next_task(|ray_idx| {
|
||||
rays.update_local(ray_idx, &ident);
|
||||
([0; 4], 0)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -621,7 +621,22 @@ mod x86_64_sse {
|
|||
|
||||
impl Bool4 {
|
||||
#[inline(always)]
|
||||
pub fn new() -> Bool4 {
|
||||
pub fn new(a: bool, b: bool, c: bool, d: bool) -> Bool4 {
|
||||
use std::arch::x86_64::_mm_set_ps;
|
||||
Bool4 {
|
||||
data: unsafe {
|
||||
_mm_set_ps(
|
||||
if d { 1.0 } else { 0.0 },
|
||||
if c { 1.0 } else { 0.0 },
|
||||
if b { 1.0 } else { 0.0 },
|
||||
if a { 1.0 } else { 0.0 },
|
||||
)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn new_false() -> Bool4 {
|
||||
use std::arch::x86_64::_mm_set1_ps;
|
||||
Bool4 {
|
||||
data: unsafe { _mm_set1_ps(0.0) },
|
||||
|
@ -667,7 +682,8 @@ mod x86_64_sse {
|
|||
///
|
||||
/// This is the `OR` operation on all the contained bools. If even
|
||||
/// one bool is true, this returns true.
|
||||
pub fn all_false(&self) -> bool {
|
||||
#[inline(always)]
|
||||
pub fn is_all_false(&self) -> bool {
|
||||
let a = unsafe { *(&self.data as *const __m128 as *const u128) };
|
||||
a == 0
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user