Split some more things out into sub-crates.

Also translated the Halton generator to rust and made it a crate
where the code is generated by a build.rs file.
This commit is contained in:
Nathan Vegdahl 2017-05-11 22:57:59 -07:00
parent 96db00b10a
commit b698a52f6c
19 changed files with 337 additions and 1597 deletions

40
Cargo.lock generated
View File

@ -1,20 +1,6 @@
[root] [root]
name = "psychopath" name = "spectra_xyz"
version = "0.1.0" version = "0.1.0"
dependencies = [
"clap 2.23.2 (registry+https://github.com/rust-lang/crates.io-index)",
"crossbeam 0.2.10 (registry+https://github.com/rust-lang/crates.io-index)",
"lazy_static 0.2.8 (registry+https://github.com/rust-lang/crates.io-index)",
"lodepng 0.8.1 (registry+https://github.com/rust-lang/crates.io-index)",
"mem_arena 0.1.0",
"nom 1.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
"num_cpus 1.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
"openexr 0.1.0 (git+https://github.com/cessen/openexr-rs?rev=612fc6c81c031970ffddcab15509236711613de8)",
"rustc-serialize 0.3.23 (registry+https://github.com/rust-lang/crates.io-index)",
"scoped_threadpool 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)",
"simd 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"time 0.1.36 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "ansi_term" name = "ansi_term"
@ -74,6 +60,10 @@ name = "gcc"
version = "0.3.45" version = "0.3.45"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "halton"
version = "0.1.0"
[[package]] [[package]]
name = "kernel32-sys" name = "kernel32-sys"
version = "0.2.2" version = "0.2.2"
@ -145,6 +135,26 @@ name = "pkg-config"
version = "0.3.9" version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "psychopath"
version = "0.1.0"
dependencies = [
"clap 2.23.2 (registry+https://github.com/rust-lang/crates.io-index)",
"crossbeam 0.2.10 (registry+https://github.com/rust-lang/crates.io-index)",
"halton 0.1.0",
"lazy_static 0.2.8 (registry+https://github.com/rust-lang/crates.io-index)",
"lodepng 0.8.1 (registry+https://github.com/rust-lang/crates.io-index)",
"mem_arena 0.1.0",
"nom 1.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
"num_cpus 1.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
"openexr 0.1.0 (git+https://github.com/cessen/openexr-rs?rev=612fc6c81c031970ffddcab15509236711613de8)",
"rustc-serialize 0.3.23 (registry+https://github.com/rust-lang/crates.io-index)",
"scoped_threadpool 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)",
"simd 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"spectra_xyz 0.1.0",
"time 0.1.36 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "redox_syscall" name = "redox_syscall"
version = "0.1.17" version = "0.1.17"

View File

@ -1,5 +1,5 @@
[workspace] [workspace]
members = ["mem_arena"] members = ["sub_crates/mem_arena", "sub_crates/halton", "sub_crates/spectra_xyz"]
[package] [package]
name = "psychopath" name = "psychopath"
@ -29,5 +29,11 @@ simd = { version = "0.2.0", optional = true }
openexr = { git = "https://github.com/cessen/openexr-rs", rev = "612fc6c81c031970ffddcab15509236711613de8" } openexr = { git = "https://github.com/cessen/openexr-rs", rev = "612fc6c81c031970ffddcab15509236711613de8" }
# Local crate dependencies # Local crate dependencies
[dependencies.halton]
path = "sub_crates/halton"
[dependencies.mem_arena] [dependencies.mem_arena]
path = "mem_arena" path = "sub_crates/mem_arena"
[dependencies.spectra_xyz]
path = "sub_crates/spectra_xyz"

View File

@ -3,11 +3,12 @@
use std; use std;
use std::cmp::Ordering; use std::cmp::Ordering;
use halton;
use algorithm::{partition, quick_select}; use algorithm::{partition, quick_select};
use bbox::BBox; use bbox::BBox;
use lerp::lerp_slice; use lerp::lerp_slice;
use math::{Vector, dot}; use math::{Vector, dot};
use sampling::halton;
use sampling::uniform_sample_hemisphere; use sampling::uniform_sample_hemisphere;

View File

@ -1,13 +1,11 @@
mod spectra_xyz;
use std::ops::{Add, AddAssign, Mul, MulAssign, Div, DivAssign}; use std::ops::{Add, AddAssign, Mul, MulAssign, Div, DivAssign};
use spectra_xyz::{spectrum_xyz_to_p, EQUAL_ENERGY_REFLECTANCE};
use float4::Float4; use float4::Float4;
use lerp::Lerp; use lerp::Lerp;
use math::faster_exp; use math::faster_exp;
use self::spectra_xyz::{spectrum_xyz_to_p, EQUAL_ENERGY_REFLECTANCE};
// Minimum and maximum wavelength of light we care about, in nanometers // Minimum and maximum wavelength of light we care about, in nanometers
const WL_MIN: f32 = 380.0; const WL_MIN: f32 = 380.0;

View File

@ -1,4 +1,6 @@
extern crate halton;
extern crate mem_arena; extern crate mem_arena;
extern crate spectra_xyz;
extern crate crossbeam; extern crate crossbeam;
extern crate clap; extern crate clap;

View File

@ -8,6 +8,8 @@ use std::sync::{RwLock, Mutex};
use crossbeam::sync::MsQueue; use crossbeam::sync::MsQueue;
use scoped_threadpool::Pool; use scoped_threadpool::Pool;
use halton;
use algorithm::partition_pair; use algorithm::partition_pair;
use accel::ACCEL_TRAV_TIME; use accel::ACCEL_TRAV_TIME;
use color::{Color, XYZ, SpectralSample, map_0_1_to_wavelength}; use color::{Color, XYZ, SpectralSample, map_0_1_to_wavelength};
@ -17,7 +19,6 @@ use hilbert;
use image::Image; use image::Image;
use math::{fast_logit, upper_power_of_two}; use math::{fast_logit, upper_power_of_two};
use ray::Ray; use ray::Ray;
use sampling::halton;
use scene::Scene; use scene::Scene;
use surface; use surface;
use timer::Timer; use timer::Timer;
@ -158,6 +159,7 @@ impl<'a> Renderer<'a> {
halton::sample(1, offset + si as u32)), halton::sample(1, offset + si as u32)),
halton::sample(2, offset + si as u32), halton::sample(2, offset + si as u32),
map_0_1_to_wavelength(halton::sample(3, map_0_1_to_wavelength(halton::sample(3,
offset + offset +
si as si as
u32)), u32)),

View File

@ -1,186 +0,0 @@
#!/usr/bin/env python
# Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Adapted to generate Rust instead of C by Nathan Vegdahl
# Generate Rust code for evaluating Halton points with Faure-permutations for different bases.
# How many components to generate.
num_dimensions = 128
# Check primality. Not optimized, since it's not performance-critical.
def is_prime(p):
for i in range(2, p):
if not p % i:
return False
return True
# Init prime number array.
primes = []
candidate = 1
for i in range(num_dimensions):
while (True):
candidate += 1
if (is_prime(candidate)):
break;
primes.append(candidate)
# Compute the Faure digit permutation for 0, ..., b - 1.
def get_faure_permutation(b):
if b < 2:
return (0,)
elif b == 2:
return (0, 1)
elif b & 1: # odd
c = (b - 1) / 2
def faure_odd(i):
if i == c:
return c
f = faure[b - 1][i - int(i > c)]
return f + int(f >= c)
return tuple((faure_odd(i) for i in range(b)))
else: # even
c = b / 2
def faure_even(i):
if i < c:
return 2 * faure[c][i]
else:
return 2 * faure[c][i - c] + 1
return tuple((faure_even(i) for i in range(b)))
# Init Faure permutations.
faure = []
for b in range(primes[-1] + 1):
faure.append(get_faure_permutation(b))
# Compute the radical inverse with Faure permutations.
def invert(base, index, digits):
result = 0
for i in range(digits):
index, remainder = divmod(index, base)
result = result * base + faure[base][remainder]
return result
# Print the beginning bits of the file
print '''#![allow(dead_code)]
#![cfg_attr(rustfmt, rustfmt_skip)]
// Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// This file is automatically generated.
// Compute points of the Halton sequence with with Faure-permutations for different bases.
pub const MAX_DIMENSION: u32 = %d;''' % num_dimensions
# Print the sampling function
print '''
pub fn sample(dimension: u32, index: u32) -> f32 {
match dimension {'''
for i in range(num_dimensions):
print ' %d => halton%d(index),' % (i, primes[i])
print '''
_ => panic!("Exceeded max dimensions."),
}
}
'''
# Print the special-cased first dimension
print '''
// Special case: radical inverse in base 2, with direct bit reversal.
fn halton2(mut index: u32) -> f32 {
index = (index << 16) | (index >> 16);
index = ((index & 0x00ff00ff) << 8) | ((index & 0xff00ff00) >> 8);
index = ((index & 0x0f0f0f0f) << 4) | ((index & 0xf0f0f0f0) >> 4);
index = ((index & 0x33333333) << 2) | ((index & 0xcccccccc) >> 2);
index = ((index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);
return (index as f32) * (1.0 / ((1u64 << 32) as f32));
}
'''
for i in range(1, num_dimensions): # Skip base 2.
base = primes[i]
# Based on the permutation table size, we process multiple digits at once.
digits = 1
pow_base = base
while pow_base * base <= 500: # Maximum permutation table size.
pow_base *= base
digits += 1
max_power = pow_base
powers = []
while max_power * pow_base < (1 << 32): # 32-bit unsigned precision
powers.append(max_power)
max_power *= pow_base
# Build the permutation table.
perm = []
for j in range(pow_base):
perm.append(invert(base, j, digits))
power = max_power / pow_base
print '''
fn halton%d(index: u32) -> f32 {
const PERM%d: [u16; %d] = [%s];
''' % (base, base, len(perm), ', '.join(str(k) for k in perm))
print ''' return (unsafe{*PERM%d.get_unchecked((index %% %d) as usize)} as u32 * %d +''' % \
(base, pow_base, power)
# Advance to next set of digits.
div = 1
while power / pow_base > 1:
div *= pow_base
power /= pow_base
print ' unsafe{*PERM%d.get_unchecked(((index / %d) %% %d) as usize)} as u32 * %d +' % (base, div, pow_base, power)
print ''' unsafe{*PERM%d.get_unchecked(((index / %d) %% %d) as usize)} as u32) as f32 * (0.999999940395355224609375f32 / (%du32 as f32)); // Results in [0,1).
}
''' % (base, div * pow_base, pow_base, max_power)

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,3 @@
pub mod halton;
mod monte_carlo; mod monte_carlo;
pub use self::monte_carlo::{square_to_circle, cosine_sample_hemisphere, uniform_sample_hemisphere, pub use self::monte_carlo::{square_to_circle, cosine_sample_hemisphere, uniform_sample_hemisphere,

View File

@ -0,0 +1,10 @@
[package]
name = "halton"
version = "0.1.0"
authors = ["Nathan Vegdahl <cessen@cessen.com>"]
license = "MIT"
build = "build.rs"
[lib]
name = "halton"
path = "src/lib.rs"

272
sub_crates/halton/build.rs Normal file
View File

@ -0,0 +1,272 @@
// Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// Adapted to Rust and to generate Rust instead of C by Nathan Vegdahl
// Generate Rust code for evaluating Halton points with Faure-permutations for different bases.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::Path;
/// How many components to generate.
const NUM_DIMENSIONS: usize = 128;
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let dest_path = Path::new(&out_dir).join("halton.rs");
let mut f = File::create(&dest_path).unwrap();
// Init prime number array.
let primes = {
let mut primes = Vec::new();
let mut candidate = 1;
for _ in 0..NUM_DIMENSIONS {
loop {
candidate += 1;
if is_prime(candidate) {
primes.push(candidate);
break;
}
}
}
primes
};
// Init Faure permutations.
let faure = {
let mut faure: Vec<Vec<usize>> = Vec::new();
for b in 0..(primes.last().unwrap() + 1) {
let perm = get_faure_permutation(&faure, b);
faure.push(perm);
}
faure
};
// Write the beginning bits of the file
f.write_all(format!(r#"
// Copyright (c) 2012 Leonhard Gruenschloss (leonhard@gruenschloss.org)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// This file is automatically generated.
// Compute points of the Halton sequence with with Faure-permutations for different bases.
pub const MAX_DIMENSION: u32 = {};
"#,
NUM_DIMENSIONS)
.as_bytes())
.unwrap();
// Write the sampling function
f.write_all(format!(r#"
#[inline]
pub fn sample(dimension: u32, index: u32) -> f32 {{
match dimension {{"#)
.as_bytes())
.unwrap();
for i in 0..NUM_DIMENSIONS {
f.write_all(format!(r#"
{} => halton{}(index),"#,
i,
primes[i])
.as_bytes())
.unwrap();
}
f.write_all(format!(r#"
_ => panic!("Exceeded max dimensions."),
}}
}}
"#)
.as_bytes())
.unwrap();
// Write the special-cased first dimension
f.write_all(format!(r#"
// Special case: radical inverse in base 2, with direct bit reversal.
fn halton2(mut index: u32) -> f32 {{
index = (index << 16) | (index >> 16);
index = ((index & 0x00ff00ff) << 8) | ((index & 0xff00ff00) >> 8);
index = ((index & 0x0f0f0f0f) << 4) | ((index & 0xf0f0f0f0) >> 4);
index = ((index & 0x33333333) << 2) | ((index & 0xcccccccc) >> 2);
index = ((index & 0x55555555) << 1) | ((index & 0xaaaaaaaa) >> 1);
return (index as f32) * (1.0 / ((1u64 << 32) as f32));
}}
"#)
.as_bytes())
.unwrap();
for i in 1..NUM_DIMENSIONS {
// Skip base 2.
let base = primes[i];
// Based on the permutation table size, we process multiple digits at once.
let mut digits = 1;
let mut pow_base = base;
while pow_base * base <= 500 {
// Maximum permutation table size.
pow_base *= base;
digits += 1;
}
let mut max_power = pow_base;
let mut powers = Vec::new();
while (max_power * pow_base) < (1 << 32) {
// 32-bit unsigned precision
powers.push(max_power);
max_power *= pow_base;
}
// Build the permutation table.
let perm = (0..pow_base).map(|j| invert(&faure, base, j, digits)).collect::<Vec<_>>();
let perm_string = {
let mut perm_string = String::new();
for i in perm.iter() {
let s = format!("{}, ", i);
perm_string.push_str(&s);
}
perm_string
};
let mut power = max_power / pow_base;
f.write_all(format!(r#"
fn halton{}(index: u32) -> f32 {{
const PERM{}: [u16; {}] = [{}];"#,
base,
base,
perm.len(),
perm_string)
.as_bytes())
.unwrap();;
f.write_all(format!(r#"
return (unsafe{{*PERM{}.get_unchecked((index % {}) as usize)}} as u32 * {} +"#,
base,
pow_base,
power)
.as_bytes())
.unwrap();;
// Advance to next set of digits.
let mut div = 1;
while power / pow_base > 1 {
div *= pow_base;
power /= pow_base;
f.write_all(format!(r#"
unsafe{{*PERM{}.get_unchecked(((index / {}) % {}) as usize)}} as u32 * {} +"#,
base,
div,
pow_base,
power)
.as_bytes())
.unwrap();;
}
f.write_all(format!(r#"
unsafe{{*PERM{}.get_unchecked(((index / {}) % {}) as usize)}} as u32) as f32 *
(0.999999940395355224609375f32 / ({}u32 as f32)); // Results in [0,1).
}}
"#,
base,
div * pow_base,
pow_base,
max_power)
.as_bytes())
.unwrap();;
}
}
/// Check primality. Not optimized, since it's not performance-critical.
fn is_prime(p: usize) -> bool {
for i in 2..p {
if (p % i) == 0 {
return false;
}
}
return true;
}
/// Computes the Faure digit permutation for 0, ..., b - 1.
fn get_faure_permutation(faure: &Vec<Vec<usize>>, b: usize) -> Vec<usize> {
if b < 2 {
return vec![0];
} else if b == 2 {
return vec![0, 1];
} else if (b & 1) != 0 {
// odd
let c = (b - 1) / 2;
return (0..b)
.map(|i| {
if i == c {
return c;
}
let f: usize = faure[b - 1][i - ((i > c) as usize)];
f + ((f >= c) as usize)
})
.collect();
} else {
// even
let c = b / 2;
return (0..b)
.map(|i| if i < c {
2 * faure[c][i]
} else {
2 * faure[c][i - c] + 1
})
.collect();
}
}
/// Compute the radical inverse with Faure permutations.
fn invert(faure: &Vec<Vec<usize>>, base: usize, mut index: usize, digits: usize) -> usize {
let mut result = 0;
for _ in 0..digits {
let remainder = index % base;
index = index / base;
result = result * base + faure[base][remainder];
}
return result;
}

View File

@ -0,0 +1,4 @@
#![allow(dead_code)]
// Include the file generated by the build.rs script
include!(concat!(env!("OUT_DIR"), "/halton.rs"));

View File

@ -0,0 +1,9 @@
[package]
name = "spectra_xyz"
version = "0.1.0"
authors = ["Nathan Vegdahl <cessen@cessen.com>"]
license = "MIT"
[lib]
name = "spectra_xyz"
path = "src/lib.rs"