Change to using a dedicated affine transform type.

This lets certain operations, especially matrix inversion, be
quite a bit faster.  And we don't need anything beyond affine
transformations anyway.
This commit is contained in:
Nathan Vegdahl 2021-05-14 13:30:28 -07:00
parent e6f9af9336
commit e0ee0d6dff
21 changed files with 275 additions and 318 deletions

View File

@ -7,7 +7,7 @@ use std::{
use crate::{
lerp::{lerp, lerp_slice, Lerp},
math::{fast_minf32, Matrix4x4, Point, Vector},
math::{fast_minf32, Point, Transform, Vector},
};
const BBOX_MAXT_ADJUST: f32 = 1.000_000_24;
@ -55,7 +55,7 @@ impl BBox {
}
// Creates a new BBox transformed into a different space.
pub fn transformed(&self, xform: Matrix4x4) -> BBox {
pub fn transformed(&self, xform: Transform) -> BBox {
// BBox corners
let vs = [
Point::new(self.min.x(), self.min.y(), self.min.z()),
@ -150,7 +150,7 @@ impl Lerp for BBox {
}
}
pub fn transform_bbox_slice_from(bbs_in: &[BBox], xforms: &[Matrix4x4], bbs_out: &mut Vec<BBox>) {
pub fn transform_bbox_slice_from(bbs_in: &[BBox], xforms: &[Transform], bbs_out: &mut Vec<BBox>) {
bbs_out.clear();
// Transform the bounding boxes

View File

@ -4,14 +4,14 @@ use kioku::Arena;
use crate::{
lerp::lerp_slice,
math::{Matrix4x4, Point, Vector},
math::{Point, Transform, Vector},
ray::Ray,
sampling::square_to_circle,
};
#[derive(Copy, Clone, Debug)]
pub struct Camera<'a> {
transforms: &'a [Matrix4x4],
transforms: &'a [Transform],
fovs: &'a [f32],
tfovs: &'a [f32],
aperture_radii: &'a [f32],
@ -21,7 +21,7 @@ pub struct Camera<'a> {
impl<'a> Camera<'a> {
pub fn new(
arena: &'a Arena,
transforms: &[Matrix4x4],
transforms: &[Transform],
fovs: &[f32],
mut aperture_radii: &[f32],
mut focus_distances: &[f32],

View File

@ -1,6 +1,6 @@
#![allow(dead_code)]
use math3d::{Matrix4x4, Normal, Point, Vector};
use math3d::{Normal, Point, Transform, Vector};
/// Trait for allowing a type to be linearly interpolated.
pub trait Lerp: Copy {
@ -106,8 +106,8 @@ impl Lerp for glam::Vec4 {
}
}
impl Lerp for Matrix4x4 {
fn lerp(self, other: Matrix4x4, alpha: f32) -> Matrix4x4 {
impl Lerp for Transform {
fn lerp(self, other: Transform, alpha: f32) -> Transform {
(self * (1.0 - alpha)) + (other * alpha)
}
}
@ -215,23 +215,21 @@ mod tests {
#[test]
fn lerp_matrix() {
let a = Matrix4x4::new_from_values(
0.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
let a = Transform::new_from_values(
0.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0,
);
let b = Matrix4x4::new_from_values(
-1.0, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0,
let b = Transform::new_from_values(
-1.0, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
);
let c1 = Matrix4x4::new_from_values(
-0.25, 1.75, 2.25, 3.25, 4.25, 5.25, 6.25, 7.25, 8.25, 9.25, 10.25, 11.25, 12.25,
13.25, 14.25, 15.25,
let c1 = Transform::new_from_values(
-0.25, 1.75, 2.25, 3.25, 4.25, 5.25, 6.25, 7.25, 8.25, 9.25, 10.25, 11.25,
);
let c2 = Matrix4x4::new_from_values(
-0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5,
let c2 = Transform::new_from_values(
-0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5,
);
let c3 = Matrix4x4::new_from_values(
-0.75, 1.25, 2.75, 3.75, 4.75, 5.75, 6.75, 7.75, 8.75, 9.75, 10.75, 11.75, 12.75,
13.75, 14.75, 15.75,
let c3 = Transform::new_from_values(
-0.75, 1.25, 2.75, 3.75, 4.75, 5.75, 6.75, 7.75, 8.75, 9.75, 10.75, 11.75,
);
assert_eq!(a.lerp(b, 0.0), a);

View File

@ -6,7 +6,7 @@ use std::fmt::Debug;
use crate::{
color::SpectralSample,
math::{Matrix4x4, Normal, Point, Vector},
math::{Normal, Point, Transform, Vector},
surface::Surface,
};
@ -34,7 +34,7 @@ pub trait SurfaceLight: Surface {
/// - The pdf of the sample.
fn sample_from_point(
&self,
space: &Matrix4x4,
space: &Transform,
arr: Point,
u: f32,
v: f32,

View File

@ -5,7 +5,7 @@ use crate::{
boundable::Boundable,
color::{Color, SpectralSample},
lerp::lerp_slice,
math::{cross, dot, Matrix4x4, Normal, Point, Vector},
math::{cross, dot, Normal, Point, Transform, Vector},
ray::{RayBatch, RayStack},
sampling::{
spherical_triangle_solid_angle, triangle_surface_area, uniform_sample_spherical_triangle,
@ -51,7 +51,7 @@ impl<'a> RectangleLight<'a> {
// more efficiently by inlining it there.
fn sample_pdf(
&self,
space: &Matrix4x4,
space: &Transform,
arr: Point,
sample_dir: Vector,
hit_point: Point,
@ -97,7 +97,7 @@ impl<'a> RectangleLight<'a> {
// fn outgoing(
// &self,
// space: &Matrix4x4,
// space: &Transform,
// dir: Vector,
// u: f32,
// v: f32,
@ -120,7 +120,7 @@ impl<'a> RectangleLight<'a> {
impl<'a> SurfaceLight for RectangleLight<'a> {
fn sample_from_point(
&self,
space: &Matrix4x4,
space: &Transform,
arr: Point,
u: f32,
v: f32,
@ -261,7 +261,7 @@ impl<'a> Surface for RectangleLight<'a> {
ray_stack: &mut RayStack,
isects: &mut [SurfaceIntersection],
shader: &dyn SurfaceShader,
space: &[Matrix4x4],
space: &[Transform],
) {
let _ = shader; // Silence 'unused' warning

View File

@ -7,7 +7,7 @@ use crate::{
boundable::Boundable,
color::{Color, SpectralSample},
lerp::lerp_slice,
math::{coordinate_system_from_vector, dot, Matrix4x4, Normal, Point, Vector},
math::{coordinate_system_from_vector, dot, Normal, Point, Transform, Vector},
ray::{RayBatch, RayStack},
sampling::{uniform_sample_cone, uniform_sample_cone_pdf, uniform_sample_sphere},
shading::surface_closure::SurfaceClosure,
@ -50,7 +50,7 @@ impl<'a> SphereLight<'a> {
// more efficiently by inlining it there.
fn sample_pdf(
&self,
space: &Matrix4x4,
space: &Transform,
arr: Point,
sample_dir: Vector,
sample_u: f32,
@ -84,7 +84,7 @@ impl<'a> SphereLight<'a> {
impl<'a> SurfaceLight for SphereLight<'a> {
fn sample_from_point(
&self,
space: &Matrix4x4,
space: &Transform,
arr: Point,
u: f32,
v: f32,
@ -210,7 +210,7 @@ impl<'a> Surface for SphereLight<'a> {
ray_stack: &mut RayStack,
isects: &mut [SurfaceIntersection],
shader: &dyn SurfaceShader,
space: &[Matrix4x4],
space: &[Transform],
) {
let _ = shader; // Silence 'unused' warning

View File

@ -2,7 +2,7 @@
use std::f32;
pub use math3d::{cross, dot, CrossProduct, DotProduct, Matrix4x4, Normal, Point, Vector};
pub use math3d::{cross, dot, CrossProduct, DotProduct, Normal, Point, Transform, Vector};
/// Clamps a value between a min and max.
pub fn clamp<T: PartialOrd>(v: T, lower: T, upper: T) -> T {

View File

@ -10,7 +10,7 @@ use crate::{
camera::Camera,
color::{rec709_e_to_xyz, Color},
light::WorldLightSource,
math::Matrix4x4,
math::Transform,
renderer::Renderer,
scene::Scene,
scene::World,
@ -553,16 +553,17 @@ fn parse_world<'a>(arena: &'a Arena, tree: &'a DataTree) -> Result<World<'a>, Ps
}
}
pub fn parse_matrix(contents: &str) -> Result<Matrix4x4, PsyParseError> {
pub fn parse_matrix(contents: &str) -> Result<Transform, PsyParseError> {
if let IResult::Ok((leftover, ns)) = all_consuming(tuple((
ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32,
ws_f32, ws_f32, ws_f32, ws_f32, ws_f32,
)))(contents)
{
if leftover.is_empty() {
return Ok(Matrix4x4::new_from_values(
ns.0, ns.4, ns.8, ns.12, ns.1, ns.5, ns.9, ns.13, ns.2, ns.6, ns.10, ns.14, ns.3,
ns.7, ns.11, ns.15,
return Ok(Transform::new_from_values(
// We throw away the last row, since it's not necessarily affine.
// TODO: is there a more correct way to handle this?
ns.0, ns.4, ns.8, ns.12, ns.1, ns.5, ns.9, ns.13, ns.2, ns.6, ns.10, ns.14,
));
}
}

View File

@ -2,7 +2,7 @@
use glam::BVec4A;
use crate::math::{Matrix4x4, Point, Vector};
use crate::math::{Point, Transform, Vector};
type RayIndexType = u16;
type FlagType = u8;
@ -119,7 +119,7 @@ impl RayBatch {
///
/// This should be called when entering (and exiting) traversal of a
/// new transform space.
pub fn update_local(&mut self, idx: usize, xform: &Matrix4x4) {
pub fn update_local(&mut self, idx: usize, xform: &Transform) {
self.hot[idx].orig_local = self.cold[idx].orig * *xform;
self.hot[idx].dir_inv_local = Vector {
co: (self.cold[idx].dir * *xform).co.recip(),

View File

@ -10,7 +10,7 @@ use crate::{
color::SpectralSample,
lerp::lerp_slice,
light::SurfaceLight,
math::{Matrix4x4, Normal, Point},
math::{Normal, Point, Transform},
shading::SurfaceShader,
surface::{Surface, SurfaceIntersection},
transform_stack::TransformStack,
@ -21,7 +21,7 @@ pub struct Assembly<'a> {
// Instance list
pub instances: &'a [Instance],
pub light_instances: &'a [Instance],
pub xforms: &'a [Matrix4x4],
pub xforms: &'a [Transform],
// Surface shader list
pub surface_shaders: &'a [&'a dyn SurfaceShader],
@ -60,7 +60,7 @@ impl<'a> Assembly<'a> {
let sel_xform = if !xform_stack.top().is_empty() {
lerp_slice(xform_stack.top(), time)
} else {
Matrix4x4::new()
Transform::new()
};
if let Some((light_i, sel_pdf, whittled_n)) = self.light_accel.select(
idata.incoming * sel_xform,
@ -90,7 +90,7 @@ impl<'a> Assembly<'a> {
if !pxforms.is_empty() {
lerp_slice(pxforms, time)
} else {
Matrix4x4::new()
Transform::new()
}
};
@ -152,7 +152,7 @@ pub struct AssemblyBuilder<'a> {
// Instance list
instances: Vec<Instance>,
xforms: Vec<Matrix4x4>,
xforms: Vec<Transform>,
// Shader list
surface_shaders: Vec<&'a dyn SurfaceShader>,
@ -224,7 +224,7 @@ impl<'a> AssemblyBuilder<'a> {
&mut self,
name: &str,
surface_shader_name: Option<&str>,
xforms: Option<&[Matrix4x4]>,
xforms: Option<&[Transform]>,
) {
// Make sure name exists
if !self.name_exists(name) {

View File

@ -9,7 +9,7 @@ use crate::{
bbox::BBox,
boundable::Boundable,
lerp::lerp_slice,
math::{cross, dot, Matrix4x4, Normal, Point},
math::{cross, dot, Normal, Point, Transform},
ray::{RayBatch, RayStack},
shading::SurfaceClosure,
};
@ -150,13 +150,13 @@ impl<'a> MicropolyBatch<'a> {
rays: &mut RayBatch,
ray_stack: &mut RayStack,
isects: &mut [SurfaceIntersection],
space: &[Matrix4x4],
space: &[Transform],
) {
// Precalculate transform for non-motion blur cases
let static_mat_space = if space.len() == 1 {
lerp_slice(space, 0.0).inverse()
} else {
Matrix4x4::new()
Transform::new()
};
self.accel

View File

@ -10,7 +10,7 @@ use std::fmt::Debug;
use crate::{
boundable::Boundable,
math::{Matrix4x4, Normal, Point, Vector},
math::{Normal, Point, Transform, Vector},
ray::{RayBatch, RayStack},
shading::surface_closure::SurfaceClosure,
shading::SurfaceShader,
@ -25,7 +25,7 @@ pub trait Surface: Boundable + Debug + Sync {
ray_stack: &mut RayStack,
isects: &mut [SurfaceIntersection],
shader: &dyn SurfaceShader,
space: &[Matrix4x4],
space: &[Transform],
);
}
@ -86,7 +86,7 @@ pub struct SurfaceIntersectionData {
// a cube centered around `pos` with dimensions of `2 * pos_err`.
pub nor: Normal, // Shading normal
pub nor_g: Normal, // True geometric normal
pub local_space: Matrix4x4, // Matrix from global space to local space
pub local_space: Transform, // Matrix from global space to local space
pub t: f32, // Ray t-value at the intersection point
pub sample_pdf: f32, // The PDF of getting this point by explicitly sampling the surface
}

View File

@ -7,7 +7,7 @@ use crate::{
bbox::BBox,
boundable::Boundable,
lerp::lerp_slice,
math::{cross, dot, Matrix4x4, Normal, Point},
math::{cross, dot, Normal, Point, Transform},
ray::{RayBatch, RayStack},
shading::SurfaceShader,
};
@ -128,13 +128,13 @@ impl<'a> Surface for TriangleMesh<'a> {
ray_stack: &mut RayStack,
isects: &mut [SurfaceIntersection],
shader: &dyn SurfaceShader,
space: &[Matrix4x4],
space: &[Transform],
) {
// Precalculate transform for non-motion blur cases
let static_mat_space = if space.len() == 1 {
lerp_slice(space, 0.0).inverse()
} else {
Matrix4x4::new()
Transform::new()
};
self.accel

View File

@ -4,7 +4,7 @@ use crate::{
accel::ray_code,
color::{rec709_to_xyz, Color},
lerp::lerp_slice,
math::Matrix4x4,
math::Transform,
ray::{RayBatch, RayStack},
scene::{Assembly, InstanceType, Object},
shading::{SimpleSurfaceShader, SurfaceShader},
@ -63,7 +63,7 @@ impl<'a> TracerInner<'a> {
// Prep the accel part of the rays.
{
let ident = Matrix4x4::new();
let ident = Transform::new();
for i in 0..rays.len() {
rays.update_local(i, &ident);
}
@ -140,7 +140,7 @@ impl<'a> TracerInner<'a> {
rays.update_local(ray_idx, &lerp_slice(xforms, t));
});
} else {
let ident = Matrix4x4::new();
let ident = Transform::new();
ray_stack.pop_do_next_task(|ray_idx| {
rays.update_local(ray_idx, &ident);
});

View File

@ -3,10 +3,10 @@ use std::{
mem::{transmute, MaybeUninit},
};
use crate::{algorithm::merge_slices_to, math::Matrix4x4};
use crate::{algorithm::merge_slices_to, math::Transform};
pub struct TransformStack {
stack: Vec<MaybeUninit<Matrix4x4>>,
stack: Vec<MaybeUninit<Transform>>,
stack_indices: Vec<usize>,
}
@ -30,11 +30,11 @@ impl TransformStack {
self.stack_indices.push(0);
}
pub fn push(&mut self, xforms: &[Matrix4x4]) {
pub fn push(&mut self, xforms: &[Transform]) {
assert!(!xforms.is_empty());
if self.stack.is_empty() {
let xforms: &[MaybeUninit<Matrix4x4>] = unsafe { transmute(xforms) };
let xforms: &[MaybeUninit<Transform>] = unsafe { transmute(xforms) };
self.stack.extend(xforms);
} else {
let sil = self.stack_indices.len();
@ -73,7 +73,7 @@ impl TransformStack {
self.stack_indices.pop();
}
pub fn top(&self) -> &[Matrix4x4] {
pub fn top(&self) -> &[Transform] {
let sil = self.stack_indices.len();
let i1 = self.stack_indices[sil - 2];
let i2 = self.stack_indices[sil - 1];

View File

@ -1,11 +1,11 @@
#![allow(dead_code)]
mod matrix;
mod normal;
mod point;
mod transform;
mod vector;
pub use self::{matrix::Matrix4x4, normal::Normal, point::Point, vector::Vector};
pub use self::{normal::Normal, point::Point, transform::Transform, vector::Vector};
/// Trait for calculating dot products.
pub trait DotProduct {

View File

@ -1,201 +0,0 @@
#![allow(dead_code)]
use std::ops::{Add, Mul};
use approx::relative_eq;
use glam::{Mat4, Vec4};
use super::Point;
/// A 4x4 matrix, used for transforms
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix4x4(pub Mat4);
impl Matrix4x4 {
/// Creates a new identity matrix
#[inline]
pub fn new() -> Matrix4x4 {
Matrix4x4(Mat4::IDENTITY)
}
/// Creates a new matrix with the specified values:
/// a b c d
/// e f g h
/// i j k l
/// m n o p
#[inline]
#[allow(clippy::many_single_char_names)]
#[allow(clippy::too_many_arguments)]
pub fn new_from_values(
a: f32,
b: f32,
c: f32,
d: f32,
e: f32,
f: f32,
g: f32,
h: f32,
i: f32,
j: f32,
k: f32,
l: f32,
m: f32,
n: f32,
o: f32,
p: f32,
) -> Matrix4x4 {
Matrix4x4(Mat4::from_cols(
Vec4::new(a, e, i, m),
Vec4::new(b, f, j, n),
Vec4::new(c, g, k, o),
Vec4::new(d, h, l, p),
))
}
#[inline]
pub fn from_location(loc: Point) -> Matrix4x4 {
Matrix4x4(Mat4::from_translation(loc.co.into()))
}
/// Returns whether the matrices are approximately equal to each other.
/// Each corresponding element in the matrices cannot have a relative
/// error exceeding epsilon.
#[inline]
pub fn aprx_eq(&self, other: Matrix4x4, epsilon: f32) -> bool {
let mut eq = true;
for c in 0..4 {
for r in 0..4 {
let a = self.0.col(c)[r];
let b = other.0.col(c)[r];
eq &= relative_eq!(a, b, epsilon = epsilon);
}
}
eq
}
/// Returns the transpose of the matrix
#[inline]
pub fn transposed(&self) -> Matrix4x4 {
Matrix4x4(self.0.transpose())
}
/// Returns the inverse of the Matrix
#[inline]
pub fn inverse(&self) -> Matrix4x4 {
Matrix4x4(self.0.inverse())
}
}
impl Default for Matrix4x4 {
fn default() -> Self {
Self::new()
}
}
/// Multiply two matrices together
impl Mul for Matrix4x4 {
type Output = Self;
#[inline]
fn mul(self, other: Self) -> Self {
Self(other.0.mul_mat4(&self.0))
}
}
/// Multiply a matrix by a f32
impl Mul<f32> for Matrix4x4 {
type Output = Self;
#[inline]
fn mul(self, other: f32) -> Self {
Self(self.0 * other)
}
}
/// Add two matrices together
impl Add for Matrix4x4 {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
Self(self.0 + other.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn equality_test() {
let a = Matrix4x4::new();
let b = Matrix4x4::new();
let c = Matrix4x4::new_from_values(
1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 0.0, 0.0, 1.1,
);
assert_eq!(a, b);
assert!(a != c);
}
#[test]
fn approximate_equality_test() {
let a = Matrix4x4::new();
let b = Matrix4x4::new_from_values(
1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0, 0.0, 0.0,
0.0, 1.000001,
);
let c = Matrix4x4::new_from_values(
1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0, 0.0, 0.0,
0.0, 1.000003,
);
let d = Matrix4x4::new_from_values(
-1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0, 0.0, 0.0,
0.0, -1.000001,
);
assert!(a.aprx_eq(b, 0.000001));
assert!(!a.aprx_eq(c, 0.000001));
assert!(!a.aprx_eq(d, 0.000001));
}
#[test]
fn multiply_test() {
let a = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 13.0, 7.0, 15.0, 3.0,
);
let b = Matrix4x4::new_from_values(
1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0, 4.0, 8.0, 12.0, 16.0,
);
let c = Matrix4x4::new_from_values(
266.0, 141.0, 331.0, 188.5, 292.0, 158.0, 366.0, 213.0, 318.0, 175.0, 401.0, 237.5,
344.0, 192.0, 436.0, 262.0,
);
assert_eq!(a * b, c);
}
#[test]
fn inverse_test() {
let a = Matrix4x4::new_from_values(
1.0, 0.33, 0.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.1, 0.7, 1.3, 0.0, 0.0, 0.0, 0.0, -1.0,
);
let b = a.inverse();
let c = Matrix4x4::new();
assert!((dbg!(a * b)).aprx_eq(dbg!(c), 0.0000001));
}
#[test]
fn transpose_test() {
let a = Matrix4x4::new_from_values(
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0,
);
let b = Matrix4x4::new_from_values(
1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0, 4.0, 8.0, 12.0, 16.0,
);
let c = a.transposed();
assert_eq!(b, c);
}
}

View File

@ -7,7 +7,7 @@ use std::{
use glam::Vec3A;
use super::{CrossProduct, DotProduct, Matrix4x4, Vector};
use super::{CrossProduct, DotProduct, Transform, Vector};
/// A surface normal in 3d homogeneous space.
#[derive(Debug, Copy, Clone)]
@ -126,14 +126,13 @@ impl Mul<f32> for Normal {
}
}
impl Mul<Matrix4x4> for Normal {
impl Mul<Transform> for Normal {
type Output = Normal;
#[inline]
fn mul(self, other: Matrix4x4) -> Normal {
let mat = other.0.inverse().transpose();
fn mul(self, other: Transform) -> Normal {
Normal {
co: mat.transform_vector3a(self.co),
co: other.0.matrix3.inverse().transpose().mul_vec3a(self.co),
}
}
}
@ -176,9 +175,9 @@ impl CrossProduct for Normal {
#[cfg(test)]
mod tests {
use super::super::{CrossProduct, DotProduct, Matrix4x4};
use super::super::{CrossProduct, DotProduct, Transform};
use super::*;
use approx::UlpsEq;
use approx::assert_ulps_eq;
#[test]
fn add() {
@ -210,12 +209,14 @@ mod tests {
#[test]
fn mul_matrix_1() {
let n = Normal::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 13.0, 7.0, 15.0, 3.0,
let m = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
let nm = n * m;
let nm2 = Normal::new(-19.258825, 5.717648, -1.770588);
assert!(nm.co.ulps_eq(&nm2.co, 0.0, 4));
let nm2 = Normal::new(-4.0625, 1.78125, -0.03125);
for i in 0..3 {
assert_ulps_eq!(nm.co[i], nm2.co[i], max_ulps = 4);
}
}
#[test]

View File

@ -7,7 +7,7 @@ use std::{
use glam::Vec3A;
use super::{Matrix4x4, Vector};
use super::{Transform, Vector};
/// A position in 3d homogeneous space.
#[derive(Debug, Copy, Clone)]
@ -23,15 +23,6 @@ impl Point {
}
}
// /// Returns the point in standardized coordinates, where the
// /// fourth homogeneous component has been normalized to 1.0.
// #[inline(always)]
// pub fn norm(&self) -> Point {
// Point {
// co: self.co / self.co[3],
// }
// }
#[inline(always)]
pub fn min(&self, other: Point) -> Point {
let n1 = self;
@ -138,11 +129,11 @@ impl Sub<Vector> for Point {
}
}
impl Mul<Matrix4x4> for Point {
impl Mul<Transform> for Point {
type Output = Point;
#[inline]
fn mul(self, other: Matrix4x4) -> Point {
fn mul(self, other: Transform) -> Point {
Point {
co: other.0.transform_point3a(self.co),
}
@ -151,18 +142,9 @@ impl Mul<Matrix4x4> for Point {
#[cfg(test)]
mod tests {
use super::super::{Matrix4x4, Vector};
use super::super::{Transform, Vector};
use super::*;
#[test]
fn norm() {
let mut p1 = Point::new(1.0, 2.0, 3.0);
let p2 = Point::new(2.0, 4.0, 6.0);
p1.co.set_w(0.5);
assert_eq!(p2, p1.norm());
}
#[test]
fn add() {
let p1 = Point::new(1.0, 2.0, 3.0);
@ -184,8 +166,8 @@ mod tests {
#[test]
fn mul_matrix_1() {
let p = Point::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 0.0, 0.0, 0.0, 1.0,
let m = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
let pm = Point::new(15.5, 54.0, 70.0);
assert_eq!(p * m, pm);
@ -194,11 +176,10 @@ mod tests {
#[test]
fn mul_matrix_2() {
let p = Point::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 2.0, 3.0, 1.0, 5.0,
let m = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
let mut pm = Point::new(15.5, 54.0, 70.0);
pm.co.set_w(18.5);
let pm = Point::new(15.5, 54.0, 70.0);
assert_eq!(p * m, pm);
}
@ -206,12 +187,11 @@ mod tests {
fn mul_matrix_3() {
// Make sure matrix multiplication composes the way one would expect
let p = Point::new(1.0, 2.5, 4.0);
let m1 = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 13.0, 7.0, 15.0, 3.0,
);
let m2 = Matrix4x4::new_from_values(
4.0, 1.0, 2.0, 3.5, 3.0, 6.0, 5.0, 2.0, 2.0, 2.0, 4.0, 12.0, 5.0, 7.0, 8.0, 11.0,
let m1 = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
let m2 =
Transform::new_from_values(4.0, 1.0, 2.0, 3.5, 3.0, 6.0, 5.0, 2.0, 2.0, 2.0, 4.0, 12.0);
println!("{:?}", m1 * m2);
let pmm1 = p * (m1 * m2);

View File

@ -0,0 +1,178 @@
#![allow(dead_code)]
use std::ops::{Add, Mul};
use approx::relative_eq;
use glam::{Affine3A, Mat3, Mat4, Vec3};
use super::Point;
/// A 4x3 affine transform matrix, used for transforms.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Transform(pub Affine3A);
impl Transform {
/// Creates a new identity matrix
#[inline]
pub fn new() -> Transform {
Transform(Affine3A::IDENTITY)
}
/// Creates a new matrix with the specified values:
/// a b c d
/// e f g h
/// i j k l
/// m n o p
#[inline]
#[allow(clippy::many_single_char_names)]
#[allow(clippy::too_many_arguments)]
pub fn new_from_values(
a: f32,
b: f32,
c: f32,
d: f32,
e: f32,
f: f32,
g: f32,
h: f32,
i: f32,
j: f32,
k: f32,
l: f32,
) -> Transform {
Transform(Affine3A::from_mat3_translation(
Mat3::from_cols(Vec3::new(a, e, i), Vec3::new(b, f, j), Vec3::new(c, g, k)),
Vec3::new(d, h, l),
))
}
#[inline]
pub fn from_location(loc: Point) -> Transform {
Transform(Affine3A::from_translation(loc.co.into()))
}
/// Returns whether the matrices are approximately equal to each other.
/// Each corresponding element in the matrices cannot have a relative
/// error exceeding epsilon.
#[inline]
pub fn aprx_eq(&self, other: Transform, epsilon: f32) -> bool {
let mut eq = true;
for c in 0..3 {
for r in 0..3 {
let a = self.0.matrix3.col(c)[r];
let b = other.0.matrix3.col(c)[r];
eq &= relative_eq!(a, b, epsilon = epsilon);
}
}
for i in 0..3 {
let a = self.0.translation[i];
let b = other.0.translation[i];
eq &= relative_eq!(a, b, epsilon = epsilon);
}
eq
}
/// Returns the inverse of the Matrix
#[inline]
pub fn inverse(&self) -> Transform {
Transform(self.0.inverse())
}
}
impl Default for Transform {
fn default() -> Self {
Self::new()
}
}
/// Multiply two matrices together
impl Mul for Transform {
type Output = Self;
#[inline]
fn mul(self, other: Self) -> Self {
Self(other.0 * self.0)
}
}
/// Multiply a matrix by a f32
impl Mul<f32> for Transform {
type Output = Self;
#[inline]
fn mul(self, other: f32) -> Self {
Self(Affine3A::from_mat4(Mat4::from(self.0) * other))
}
}
/// Add two matrices together
impl Add for Transform {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
Self(Affine3A::from_mat4(
Mat4::from(self.0) + Mat4::from(other.0),
))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn equality_test() {
let a = Transform::new();
let b = Transform::new();
let c =
Transform::new_from_values(1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0, 0.0, 0.0, 0.0, 1.1, 0.0);
assert_eq!(a, b);
assert!(a != c);
}
#[test]
fn approximate_equality_test() {
let a = Transform::new();
let b = Transform::new_from_values(
1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0, 0.0, 0.0, 0.0, 1.000001, 0.0,
);
let c = Transform::new_from_values(
1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0, 0.0, 0.0, 0.0, 1.000003, 0.0,
);
let d = Transform::new_from_values(
-1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0, 0.0, 0.0, 0.0, -1.000001, 0.0,
);
assert!(a.aprx_eq(b, 0.000001));
assert!(!a.aprx_eq(c, 0.000001));
assert!(!a.aprx_eq(d, 0.000001));
}
#[test]
fn multiply_test() {
let a = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
let b = Transform::new_from_values(
1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0,
);
let c = Transform::new_from_values(
97.0, 50.0, 136.0, 162.5, 110.0, 60.0, 156.0, 185.0, 123.0, 70.0, 176.0, 207.5,
);
assert_eq!(a * b, c);
}
#[test]
fn inverse_test() {
let a = Transform::new_from_values(
1.0, 0.33, 0.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.1, 0.7, 1.3, 0.0,
);
let b = a.inverse();
let c = Transform::new();
assert!((dbg!(a * b)).aprx_eq(dbg!(c), 0.0000001));
}
}

View File

@ -7,7 +7,7 @@ use std::{
use glam::Vec3A;
use super::{CrossProduct, DotProduct, Matrix4x4, Normal, Point};
use super::{CrossProduct, DotProduct, Normal, Point, Transform};
/// A direction vector in 3d homogeneous space.
#[derive(Debug, Copy, Clone)]
@ -138,11 +138,11 @@ impl Mul<f32> for Vector {
}
}
impl Mul<Matrix4x4> for Vector {
impl Mul<Transform> for Vector {
type Output = Vector;
#[inline]
fn mul(self, other: Matrix4x4) -> Vector {
fn mul(self, other: Transform) -> Vector {
Vector {
co: other.0.transform_vector3a(self.co),
}
@ -187,7 +187,7 @@ impl CrossProduct for Vector {
#[cfg(test)]
mod tests {
use super::super::{CrossProduct, DotProduct, Matrix4x4};
use super::super::{CrossProduct, DotProduct, Transform};
use super::*;
#[test]
@ -220,8 +220,8 @@ mod tests {
#[test]
fn mul_matrix_1() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 13.0, 7.0, 15.0, 3.0,
let m = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
}
@ -229,8 +229,8 @@ mod tests {
#[test]
fn mul_matrix_2() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 0.0, 0.0, 0.0, 1.0,
let m = Transform::new_from_values(
1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0,
);
assert_eq!(v * m, Vector::new(14.0, 46.0, 58.0));
}