//! Encoding/decoding for signed 48-bit trifloat numbers. //! //! The encoding uses 13 bits of mantissa and 1 sign bit per number, and 6 //! bits for the shared exponent. The bit layout is: [sign 1, mantissa 1, //! sign 2, mantissa 2, sign 3, mantissa 3, exponent]. The exponent is stored //! as an unsigned integer with a bias of 26. //! //! The largest representable number is just under `2^38`, and the smallest //! representable positive number is `2^-38`. //! //! Since the exponent is shared between all three values, the precision //! of all three values depends on the largest (in magnitude) of the three. //! All integers in the range `[-8192, 8192]` can be represented exactly in the //! largest value. #![allow(clippy::cast_lossless)] use crate::{fiddle_exp2, fiddle_log2}; /// Largest representable number. pub const MAX: f32 = ((1u128 << (64 - EXP_BIAS)) - (1 << (64 - EXP_BIAS - 13))) as f32; /// Smallest representable number. /// /// Note this is not the smallest _magnitude_ number. This is a negative /// number of large magnitude. pub const MIN: f32 = -MAX; /// Smallest representable positive number. /// /// This is the number with the smallest possible magnitude (aside from zero). pub const MIN_POSITIVE: f32 = 1.0 / (1u128 << (EXP_BIAS + 12)) as f32; /// Difference between 1.0 and the next largest representable number. pub const EPSILON: f32 = 1.0 / 4096.0; const EXP_BIAS: i32 = 26; /// Encodes three floating point values into a signed 48-bit trifloat. /// /// Input floats that are larger than `MAX` or smaller than `MIN` will saturate /// to `MAX` and `MIN` respectively, including +/- infinity. Values are /// converted to trifloat precision by rounding towards zero. /// /// Warning: NaN's are _not_ supported by the trifloat format. There are /// debug-only assertions in place to catch such values in the input floats. #[inline] pub fn encode(floats: (f32, f32, f32)) -> [u8; 6] { u64_to_bytes(encode_64(floats)) } /// Decodes a signed 48-bit trifloat into three full floating point numbers. /// /// This operation is lossless and cannot fail. #[inline] pub fn decode(trifloat: [u8; 6]) -> (f32, f32, f32) { decode_64(bytes_to_u64(trifloat)) } // Workhorse encode function, which operates on u64. #[inline(always)] fn encode_64(floats: (f32, f32, f32)) -> u64 { debug_assert!( !floats.0.is_nan() && !floats.1.is_nan() && !floats.2.is_nan(), "trifloat::signed48::encode(): encoding to signed tri-floats only \ works correctly for non-NaN numbers, but the numbers passed were: \ ({}, {}, {})", floats.0, floats.1, floats.2 ); let floats_abs = (floats.0.abs(), floats.1.abs(), floats.2.abs()); let largest_abs = floats_abs.0.max(floats_abs.1.max(floats_abs.2)); if largest_abs < MIN_POSITIVE { 0 } else { let e = fiddle_log2(largest_abs).max(-EXP_BIAS).min(63 - EXP_BIAS); let inv_multiplier = fiddle_exp2(-e + 12); let x_sign = (floats.0.to_bits() >> 31) as u64; let x = (floats_abs.0 * inv_multiplier).min(8191.0) as u64; let y_sign = (floats.1.to_bits() >> 31) as u64; let y = (floats_abs.1 * inv_multiplier).min(8191.0) as u64; let z_sign = (floats.2.to_bits() >> 31) as u64; let z = (floats_abs.2 * inv_multiplier).min(8191.0) as u64; (x_sign << 47) | (x << 34) | (y_sign << 33) | (y << 20) | (z_sign << 19) | (z << 6) | (e + EXP_BIAS) as u64 } } // Workhorse decode function, which operates on u64. #[inline(always)] fn decode_64(trifloat: u64) -> (f32, f32, f32) { // Unpack values. let x = (trifloat >> 34) & 0b111_11111_11111; let y = (trifloat >> 20) & 0b111_11111_11111; let z = (trifloat >> 6) & 0b111_11111_11111; let x_sign = ((trifloat >> 16) & 0x8000_0000) as u32; let y_sign = ((trifloat >> 2) & 0x8000_0000) as u32; let z_sign = ((trifloat << 12) & 0x8000_0000) as u32; let e = trifloat & 0b111_111; let multiplier = fiddle_exp2(e as i32 - EXP_BIAS - 12); ( f32::from_bits((x as f32 * multiplier).to_bits() | x_sign), f32::from_bits((y as f32 * multiplier).to_bits() | y_sign), f32::from_bits((z as f32 * multiplier).to_bits() | z_sign), ) } #[inline(always)] fn u64_to_bytes(n: u64) -> [u8; 6] { let a = n.to_ne_bytes(); let mut b = [0u8; 6]; if cfg!(target_endian = "big") { (&mut b[..]).copy_from_slice(&a[2..8]); } else { (&mut b[..]).copy_from_slice(&a[0..6]); } b } #[inline(always)] fn bytes_to_u64(a: [u8; 6]) -> u64 { let mut b = [0u8; 8]; if cfg!(target_endian = "big") { (&mut b[2..8]).copy_from_slice(&a[..]); } else { (&mut b[0..6]).copy_from_slice(&a[..]); } u64::from_ne_bytes(b) } #[cfg(test)] mod tests { use super::*; fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) { decode(encode(floats)) } #[test] fn all_zeros() { let fs = (0.0f32, 0.0f32, 0.0f32); let tri = encode_64(fs); let fs2 = decode_64(tri); assert_eq!(tri, 0); assert_eq!(fs, fs2); } #[test] fn powers_of_two() { let fs = (8.0f32, 128.0f32, 0.5f32); assert_eq!(fs, round_trip(fs)); } #[test] fn signs() { let fs1 = (1.0f32, 1.0f32, 1.0f32); let fs2 = (1.0f32, 1.0f32, -1.0f32); let fs3 = (1.0f32, -1.0f32, 1.0f32); let fs4 = (1.0f32, -1.0f32, -1.0f32); let fs5 = (-1.0f32, 1.0f32, 1.0f32); let fs6 = (-1.0f32, 1.0f32, -1.0f32); let fs7 = (-1.0f32, -1.0f32, 1.0f32); let fs8 = (-1.0f32, -1.0f32, -1.0f32); assert_eq!(fs1, round_trip(fs1)); assert_eq!(fs2, round_trip(fs2)); assert_eq!(fs3, round_trip(fs3)); assert_eq!(fs4, round_trip(fs4)); assert_eq!(fs5, round_trip(fs5)); assert_eq!(fs6, round_trip(fs6)); assert_eq!(fs7, round_trip(fs7)); assert_eq!(fs8, round_trip(fs8)); } #[test] fn accuracy() { let mut n = 1.0; for _ in 0..256 { let (x, _, _) = round_trip((n, 0.0, 0.0)); assert_eq!(n, x); n += 1.0 / 256.0; } } #[test] fn integers() { for n in -8192i32..=8192i32 { let (x, _, _) = round_trip((n as f32, 0.0, 0.0)); assert_eq!(n as f32, x); } } #[test] fn precision_floor() { let fs = (7.0f32, 8193.0f32, -1.0f32); let fsn = (-7.0f32, -8193.0f32, 1.0f32); assert_eq!((6.0, 8192.0, -0.0), round_trip(fs)); assert_eq!((-6.0, -8192.0, 0.0), round_trip(fsn)); } #[test] fn saturate() { let fs = ( 99_999_999_999_999.0, 99_999_999_999_999.0, 99_999_999_999_999.0, ); let fsn = ( -99_999_999_999_999.0, -99_999_999_999_999.0, -99_999_999_999_999.0, ); assert_eq!((MAX, MAX, MAX), round_trip(fs)); assert_eq!((MIN, MIN, MIN), round_trip(fsn)); assert_eq!((MAX, MAX, MAX), decode_64(0x7FFD_FFF7_FFFF)); assert_eq!((MIN, MIN, MIN), decode_64(0xFFFF_FFFF_FFFF)); } #[test] fn inf_saturate() { use std::f32::INFINITY; let fs = (INFINITY, 0.0, 0.0); let fsn = (-INFINITY, 0.0, 0.0); assert_eq!((MAX, 0.0, 0.0), round_trip(fs)); assert_eq!((MIN, 0.0, 0.0), round_trip(fsn)); assert_eq!(0x7FFC0000003F, encode_64(fs)); assert_eq!(0xFFFC0000003F, encode_64(fsn)); } #[test] fn partial_saturate() { let fs = (99_999_999_999_999.0, 4294967296.0, -17179869184.0); let fsn = (-99_999_999_999_999.0, 4294967296.0, -17179869184.0); assert_eq!((MAX, 4294967296.0, -17179869184.0), round_trip(fs)); assert_eq!((MIN, 4294967296.0, -17179869184.0), round_trip(fsn)); } #[test] fn smallest_value() { let fs = (MIN_POSITIVE * 1.5, MIN_POSITIVE, MIN_POSITIVE * 0.50); let fsn = (-MIN_POSITIVE * 1.5, -MIN_POSITIVE, -MIN_POSITIVE * 0.50); assert_eq!((MIN_POSITIVE, -MIN_POSITIVE, 0.0), decode_64(0x600100000)); assert_eq!((MIN_POSITIVE, MIN_POSITIVE, 0.0), round_trip(fs)); assert_eq!((-MIN_POSITIVE, -MIN_POSITIVE, -0.0), round_trip(fsn)); } #[test] fn underflow() { let fs = (MIN_POSITIVE * 0.5, -MIN_POSITIVE * 0.5, MIN_POSITIVE); assert_eq!(0x200000040, encode_64(fs)); assert_eq!((0.0, -0.0, MIN_POSITIVE), round_trip(fs)); } #[test] fn garbage_upper_bits_decode() { let fs1 = (4.0, -623.53, 12.3); let fs2 = (-63456254.2, 5235423.53, 54353.3); let fs3 = (-0.000000634, 0.00000000005, 0.00000000892); let n1 = encode_64(fs1); let n2 = encode_64(fs2); let n3 = encode_64(fs3); assert_eq!(decode_64(n1), decode_64(n1 | 0xffff_0000_0000_0000)); assert_eq!(decode_64(n2), decode_64(n2 | 0xffff_0000_0000_0000)); assert_eq!(decode_64(n3), decode_64(n3 | 0xffff_0000_0000_0000)); } #[test] #[should_panic] fn nans_01() { encode((std::f32::NAN, 1.0, -1.0)); } #[test] #[should_panic] fn nans_02() { encode((1.0, std::f32::NAN, -1.0)); } #[test] #[should_panic] fn nans_03() { encode((1.0, -1.0, std::f32::NAN)); } }