//! Encoding/decoding for signed 48-bit trifloat numbers. //! //! The encoding uses 13 bits of mantissa and 1 sign bit per number, and 6 //! bits for the shared exponent. The bit layout is: [sign 1, mantissa 1, //! sign 2, mantissa 2, sign 3, mantissa 3, exponent]. The exponent is stored //! as an unsigned integer with a bias of 25. //! //! The largest representable number is `2^38 - 2^25`, and the smallest //! representable positive number is `2^-38`. //! //! Since the exponent is shared between all three values, the precision //! of all three values depends on the largest (in magnitude) of the three. //! All integers in the range `[-8192, 8192]` can be represented exactly in the //! largest value. use crate::{fiddle_exp2, fiddle_log2}; /// Largest representable number. pub const MAX: f32 = 274_844_352_512.0; /// Smallest representable number. /// /// Note this is not the smallest _magnitude_ number. This is a negative /// number of large magnitude. pub const MIN: f32 = -274_844_352_512.0; /// Smallest representable positive number. /// /// This is the number with the smallest possible magnitude (aside from zero). pub const MIN_POSITIVE: f32 = 0.000_000_000_003_637_978_807_091_713; /// Difference between 1.0 and the next largest representable number. pub const EPSILON: f32 = 1.0 / 4096.0; const EXP_BIAS: i32 = 25; const MIN_EXP: i32 = 0 - EXP_BIAS; const MAX_EXP: i32 = 63 - EXP_BIAS; /// Encodes three floating point values into a signed 48-bit trifloat. /// /// Input floats that are larger than `MAX` or smaller than `MIN` will saturate /// to `MAX` and `MIN` respectively, including +/- infinity. Values are /// converted to trifloat precision by rounding. /// /// Only the lower 48 bits of the return value are used. The highest 16 bits /// will all be zero and can be safely discarded. /// /// Warning: NaN's are _not_ supported by the trifloat format. There are /// debug-only assertions in place to catch such values in the input floats. #[inline] pub fn encode(floats: (f32, f32, f32)) -> u64 { debug_assert!( !floats.0.is_nan() && !floats.1.is_nan() && !floats.2.is_nan(), "trifloat::signed48::encode(): encoding to signed tri-floats only \ works correctly for non-NaN numbers, but the numbers passed were: \ ({}, {}, {})", floats.0, floats.1, floats.2 ); // Find the largest (in magnitude) of the three values. let largest_value = { let mut largest_value: f32 = 0.0; if floats.0.abs() > largest_value.abs() { largest_value = floats.0; } if floats.1.abs() > largest_value.abs() { largest_value = floats.1; } if floats.2.abs() > largest_value.abs() { largest_value = floats.2; } largest_value }; // Calculate the exponent and 1.0/multiplier for encoding the values. let (exponent, inv_multiplier) = { let mut exponent = (fiddle_log2(largest_value) + 1).max(MIN_EXP).min(MAX_EXP); let mut inv_multiplier = fiddle_exp2(-exponent + 13); // Edge-case: make sure rounding pushes the largest value up // appropriately if needed. if (largest_value * inv_multiplier).abs() + 0.5 >= 8192.0 { exponent = (exponent + 1).min(MAX_EXP); inv_multiplier = fiddle_exp2(-exponent + 13); } (exponent, inv_multiplier) }; // Quantize and encode values. let x = (floats.0.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111; let x_sign = (floats.0.to_bits() >> 31) as u64; let y = (floats.1.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111; let y_sign = (floats.1.to_bits() >> 31) as u64; let z = (floats.2.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111; let z_sign = (floats.2.to_bits() >> 31) as u64; let e = (exponent + EXP_BIAS) as u64 & 0b111_111; // Pack values into a single u64 and return. (x_sign << 47) | (x << 34) | (y_sign << 33) | (y << 20) | (z_sign << 19) | (z << 6) | e } /// Decodes a signed 48-bit trifloat into three full floating point numbers. /// /// This operation is lossless and cannot fail. Only the lower 48 bits of the /// input value are used--the upper 16 bits can safely be anything and are /// ignored. #[inline] pub fn decode(trifloat: u64) -> (f32, f32, f32) { // Unpack values. let x = (trifloat >> 34) & 0b111_11111_11111; let y = (trifloat >> 20) & 0b111_11111_11111; let z = (trifloat >> 6) & 0b111_11111_11111; let x_sign = ((trifloat >> 16) & 0x8000_0000) as u32; let y_sign = ((trifloat >> 2) & 0x8000_0000) as u32; let z_sign = ((trifloat << 12) & 0x8000_0000) as u32; let e = trifloat & 0b111_111; let multiplier = fiddle_exp2(e as i32 - EXP_BIAS - 13); ( f32::from_bits((x as f32 * multiplier).to_bits() | x_sign), f32::from_bits((y as f32 * multiplier).to_bits() | y_sign), f32::from_bits((z as f32 * multiplier).to_bits() | z_sign), ) } #[cfg(test)] mod tests { use super::*; fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) { decode(encode(floats)) } #[test] fn all_zeros() { let fs = (0.0f32, 0.0f32, 0.0f32); let tri = encode(fs); let fs2 = decode(tri); assert_eq!(tri, 0); assert_eq!(fs, fs2); } #[test] fn powers_of_two() { let fs = (8.0f32, 128.0f32, 0.5f32); assert_eq!(round_trip(fs), fs); } #[test] fn signs() { let fs1 = (1.0f32, 1.0f32, 1.0f32); let fs2 = (1.0f32, 1.0f32, -1.0f32); let fs3 = (1.0f32, -1.0f32, 1.0f32); let fs4 = (1.0f32, -1.0f32, -1.0f32); let fs5 = (-1.0f32, 1.0f32, 1.0f32); let fs6 = (-1.0f32, 1.0f32, -1.0f32); let fs7 = (-1.0f32, -1.0f32, 1.0f32); let fs8 = (-1.0f32, -1.0f32, -1.0f32); assert_eq!(fs1, round_trip(fs1)); assert_eq!(fs2, round_trip(fs2)); assert_eq!(fs3, round_trip(fs3)); assert_eq!(fs4, round_trip(fs4)); assert_eq!(fs5, round_trip(fs5)); assert_eq!(fs6, round_trip(fs6)); assert_eq!(fs7, round_trip(fs7)); assert_eq!(fs8, round_trip(fs8)); } #[test] fn accuracy() { let mut n = 1.0; for _ in 0..256 { let (x, _, _) = round_trip((n, 0.0, 0.0)); assert_eq!(n, x); n += 1.0 / 256.0; } } #[test] fn integers() { for n in -8192i32..=8192i32 { let (x, _, _) = round_trip((n as f32, 0.0, 0.0)); assert_eq!(n as f32, x); } } #[test] fn rounding() { let fs = (7.0f32, 8193.0f32, -1.0f32); let fsn = (-7.0f32, -8193.0f32, 1.0f32); assert_eq!(round_trip(fs), (8.0, 8194.0, -2.0)); assert_eq!(round_trip(fsn), (-8.0, -8194.0, 2.0)); } #[test] fn rounding_edge_case() { let fs = (16383.0f32, 0.0f32, 0.0f32); assert_eq!(round_trip(fs), (16384.0, 0.0, 0.0),); } #[test] fn saturate() { let fs = ( 99_999_999_999_999.0, 99_999_999_999_999.0, 99_999_999_999_999.0, ); let fsn = ( -99_999_999_999_999.0, -99_999_999_999_999.0, -99_999_999_999_999.0, ); assert_eq!(round_trip(fs), (MAX, MAX, MAX)); assert_eq!(round_trip(fsn), (MIN, MIN, MIN)); assert_eq!(decode(0x7FFD_FFF7_FFFF), (MAX, MAX, MAX)); assert_eq!(decode(0xFFFF_FFFF_FFFF), (MIN, MIN, MIN)); } #[test] fn inf_saturate() { use std::f32::INFINITY; let fs = (INFINITY, 0.0, 0.0); let fsn = (-INFINITY, 0.0, 0.0); assert_eq!(round_trip(fs), (MAX, 0.0, 0.0)); assert_eq!(round_trip(fsn), (MIN, 0.0, 0.0)); assert_eq!(encode(fs), 0x7FFC0000003F); assert_eq!(encode(fsn), 0xFFFC0000003F); } #[test] fn partial_saturate() { let fs = (99_999_999_999_999.0, 4294967296.0, -17179869184.0); let fsn = (-99_999_999_999_999.0, 4294967296.0, -17179869184.0); assert_eq!(round_trip(fs), (MAX, 4294967296.0, -17179869184.0)); assert_eq!(round_trip(fsn), (MIN, 4294967296.0, -17179869184.0)); } #[test] fn smallest_value() { let fs = (MIN_POSITIVE, MIN_POSITIVE * 0.5, MIN_POSITIVE * 0.49); let fsn = (-MIN_POSITIVE, -MIN_POSITIVE * 0.5, -MIN_POSITIVE * 0.49); assert_eq!(decode(0x600100000), (MIN_POSITIVE, -MIN_POSITIVE, 0.0)); assert_eq!(round_trip(fs), (MIN_POSITIVE, MIN_POSITIVE, 0.0)); assert_eq!(round_trip(fsn), (-MIN_POSITIVE, -MIN_POSITIVE, -0.0)); } #[test] fn underflow() { let fs = (MIN_POSITIVE * 0.49, -MIN_POSITIVE * 0.49, 0.0); assert_eq!(encode(fs), 0x200000000); assert_eq!(round_trip(fs), (0.0, -0.0, 0.0)); } #[test] fn garbage_upper_bits_decode() { let fs1 = (4.0, -623.53, 12.3); let fs2 = (-63456254.2, 5235423.53, 54353.3); let fs3 = (-0.000000634, 0.00000000005, 0.00000000892); let n1 = encode(fs1); let n2 = encode(fs2); let n3 = encode(fs3); assert_eq!(decode(n1), decode(n1 | 0xffff_0000_0000_0000)); assert_eq!(decode(n2), decode(n2 | 0xffff_0000_0000_0000)); assert_eq!(decode(n3), decode(n3 | 0xffff_0000_0000_0000)); } #[test] #[should_panic] fn nans_01() { encode((std::f32::NAN, 1.0, -1.0)); } #[test] #[should_panic] fn nans_02() { encode((1.0, std::f32::NAN, -1.0)); } #[test] #[should_panic] fn nans_03() { encode((1.0, -1.0, std::f32::NAN)); } }