#![allow(dead_code)] use std::cmp::PartialEq; use std::ops::{Add, Div, Mul, Neg, Sub}; use float4::Float4; use super::{CrossProduct, DotProduct}; use super::{Matrix4x4, Normal, Point}; /// A direction vector in 3d homogeneous space. #[derive(Debug, Copy, Clone)] pub struct Vector { pub co: Float4, } impl Vector { #[inline(always)] pub fn new(x: f32, y: f32, z: f32) -> Vector { Vector { co: Float4::new(x, y, z, 0.0), } } #[inline(always)] pub fn length(&self) -> f32 { (self.co * self.co).h_sum().sqrt() } #[inline(always)] pub fn length2(&self) -> f32 { (self.co * self.co).h_sum() } #[inline(always)] pub fn normalized(&self) -> Vector { *self / self.length() } #[inline(always)] pub fn abs(&self) -> Vector { Vector::new(self.x().abs(), self.y().abs(), self.z().abs()) } #[inline(always)] pub fn into_point(self) -> Point { Point::new(self.x(), self.y(), self.z()) } #[inline(always)] pub fn into_normal(self) -> Normal { Normal::new(self.x(), self.y(), self.z()) } #[inline(always)] pub fn get_n(&self, n: usize) -> f32 { match n { 0 => self.x(), 1 => self.y(), 2 => self.z(), _ => panic!("Attempt to access dimension beyond z."), } } #[inline(always)] pub fn x(&self) -> f32 { self.co.get_0() } #[inline(always)] pub fn y(&self) -> f32 { self.co.get_1() } #[inline(always)] pub fn z(&self) -> f32 { self.co.get_2() } #[inline(always)] pub fn set_x(&mut self, x: f32) { self.co.set_0(x); } #[inline(always)] pub fn set_y(&mut self, y: f32) { self.co.set_1(y); } #[inline(always)] pub fn set_z(&mut self, z: f32) { self.co.set_2(z); } } impl PartialEq for Vector { #[inline(always)] fn eq(&self, other: &Vector) -> bool { self.co == other.co } } impl Add for Vector { type Output = Vector; #[inline(always)] fn add(self, other: Vector) -> Vector { Vector { co: self.co + other.co, } } } impl Sub for Vector { type Output = Vector; #[inline(always)] fn sub(self, other: Vector) -> Vector { Vector { co: self.co - other.co, } } } impl Mul for Vector { type Output = Vector; #[inline(always)] fn mul(self, other: f32) -> Vector { Vector { co: self.co * other, } } } impl Mul for Vector { type Output = Vector; #[inline] fn mul(self, other: Matrix4x4) -> Vector { Vector { co: Float4::new( (self.co * other.values[0]).h_sum(), (self.co * other.values[1]).h_sum(), (self.co * other.values[2]).h_sum(), (self.co * other.values[3]).h_sum(), ), } } } impl Div for Vector { type Output = Vector; #[inline(always)] fn div(self, other: f32) -> Vector { Vector { co: self.co / other, } } } impl Neg for Vector { type Output = Vector; #[inline(always)] fn neg(self) -> Vector { Vector { co: self.co * -1.0 } } } impl DotProduct for Vector { #[inline(always)] fn dot(self, other: Vector) -> f32 { (self.co * other.co).h_sum() } } impl CrossProduct for Vector { #[inline] fn cross(self, other: Vector) -> Vector { Vector { co: Float4::new( (self.co.get_1() * other.co.get_2()) - (self.co.get_2() * other.co.get_1()), (self.co.get_2() * other.co.get_0()) - (self.co.get_0() * other.co.get_2()), (self.co.get_0() * other.co.get_1()) - (self.co.get_1() * other.co.get_0()), 0.0, ), } } } #[cfg(test)] mod tests { use super::*; use super::super::{CrossProduct, DotProduct, Matrix4x4}; #[test] fn add() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = Vector::new(1.5, 4.5, 2.5); let v3 = Vector::new(2.5, 6.5, 5.5); assert_eq!(v3, v1 + v2); } #[test] fn sub() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = Vector::new(1.5, 4.5, 2.5); let v3 = Vector::new(-0.5, -2.5, 0.5); assert_eq!(v3, v1 - v2); } #[test] fn mul_scalar() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = 2.0; let v3 = Vector::new(2.0, 4.0, 6.0); assert_eq!(v3, v1 * v2); } #[test] fn mul_matrix_1() { let v = Vector::new(1.0, 2.5, 4.0); let m = Matrix4x4::new_from_values( 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 13.0, 7.0, 15.0, 3.0, ); let mut vm = Vector::new(14.0, 46.0, 58.0); vm.co.set_3(90.5); assert_eq!(v * m, vm); } #[test] fn mul_matrix_2() { let v = Vector::new(1.0, 2.5, 4.0); let m = Matrix4x4::new_from_values( 1.0, 2.0, 2.0, 1.5, 3.0, 6.0, 7.0, 8.0, 9.0, 2.0, 11.0, 12.0, 0.0, 0.0, 0.0, 1.0, ); let vm = Vector::new(14.0, 46.0, 58.0); assert_eq!(v * m, vm); } #[test] fn div() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = 2.0; let v3 = Vector::new(0.5, 1.0, 1.5); assert_eq!(v3, v1 / v2); } #[test] fn length() { let v = Vector::new(1.0, 2.0, 3.0); assert!((v.length() - 3.7416573867739413).abs() < 0.000001); } #[test] fn length2() { let v = Vector::new(1.0, 2.0, 3.0); assert_eq!(v.length2(), 14.0); } #[test] fn normalized() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = Vector::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732); let v3 = v1.normalized(); assert!((v3.x() - v2.x()).abs() < 0.000001); assert!((v3.y() - v2.y()).abs() < 0.000001); assert!((v3.z() - v2.z()).abs() < 0.000001); } #[test] fn dot_test() { let v1 = Vector::new(1.0, 2.0, 3.0); let v2 = Vector::new(1.5, 4.5, 2.5); let v3 = 18.0f32; assert_eq!(v3, v1.dot(v2)); } #[test] fn cross_test() { let v1 = Vector::new(1.0, 0.0, 0.0); let v2 = Vector::new(0.0, 1.0, 0.0); let v3 = Vector::new(0.0, 0.0, 1.0); assert_eq!(v3, v1.cross(v2)); } }