psychopath/sub_crates/color/build.rs

323 lines
8.3 KiB
Rust

use std::{env, fs::File, io::Write, path::Path};
#[derive(Copy, Clone)]
struct Chromaticities {
r: (f64, f64),
g: (f64, f64),
b: (f64, f64),
w: (f64, f64),
}
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
// Rec709
{
let chroma = Chromaticities {
r: (0.640, 0.330),
g: (0.300, 0.600),
b: (0.150, 0.060),
w: (0.3127, 0.3290),
};
let dest_path = Path::new(&out_dir).join("rec709_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("rec709", chroma, &mut f);
}
// Rec2020
{
let chroma = Chromaticities {
r: (0.708, 0.292),
g: (0.170, 0.797),
b: (0.131, 0.046),
w: (0.3127, 0.3290),
};
let dest_path = Path::new(&out_dir).join("rec2020_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("rec2020", chroma, &mut f);
}
// ACES AP0
{
let chroma = Chromaticities {
r: (0.73470, 0.26530),
g: (0.00000, 1.00000),
b: (0.00010, -0.07700),
w: (0.32168, 0.33767),
};
let dest_path = Path::new(&out_dir).join("aces_ap0_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("aces_ap0", chroma, &mut f);
}
// ACES AP1
{
let chroma = Chromaticities {
r: (0.713, 0.293),
g: (0.165, 0.830),
b: (0.128, 0.044),
w: (0.32168, 0.33767),
};
let dest_path = Path::new(&out_dir).join("aces_ap1_inc.rs");
let mut f = File::create(&dest_path).unwrap();
write_conversion_functions("aces_ap1", chroma, &mut f);
}
}
/// Generates conversion functions for the given rgb to xyz transform matrix.
fn write_conversion_functions(space_name: &str, chroma: Chromaticities, f: &mut File) {
let to_xyz = rgb_to_xyz(chroma, 1.0);
f.write_all(
format!(
r#"
#[inline]
pub fn {}_to_xyz(rgb: (f32, f32, f32)) -> (f32, f32, f32) {{
(
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
)
}}
"#,
space_name,
to_xyz[0][0],
to_xyz[0][1],
to_xyz[0][2],
to_xyz[1][0],
to_xyz[1][1],
to_xyz[1][2],
to_xyz[2][0],
to_xyz[2][1],
to_xyz[2][2]
)
.as_bytes(),
)
.unwrap();
let inv = inverse(to_xyz);
f.write_all(
format!(
r#"
#[inline]
pub fn xyz_to_{}(xyz: (f32, f32, f32)) -> (f32, f32, f32) {{
(
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
)
}}
"#,
space_name,
inv[0][0],
inv[0][1],
inv[0][2],
inv[1][0],
inv[1][1],
inv[1][2],
inv[2][0],
inv[2][1],
inv[2][2]
)
.as_bytes(),
)
.unwrap();
let e_chroma = {
let mut e_chroma = chroma;
e_chroma.w = (1.0 / 3.0, 1.0 / 3.0);
e_chroma
};
let e_to_xyz = rgb_to_xyz(e_chroma, 1.0);
f.write_all(
format!(
r#"
#[inline]
pub fn {}_e_to_xyz(rgb: (f32, f32, f32)) -> (f32, f32, f32) {{
(
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
(rgb.0 * {:.10}) + (rgb.1 * {:.10}) + (rgb.2 * {:.10}),
)
}}
"#,
space_name,
e_to_xyz[0][0],
e_to_xyz[0][1],
e_to_xyz[0][2],
e_to_xyz[1][0],
e_to_xyz[1][1],
e_to_xyz[1][2],
e_to_xyz[2][0],
e_to_xyz[2][1],
e_to_xyz[2][2]
)
.as_bytes(),
)
.unwrap();
let inv_e = inverse(e_to_xyz);
f.write_all(
format!(
r#"
#[inline]
pub fn xyz_to_{}_e(xyz: (f32, f32, f32)) -> (f32, f32, f32) {{
(
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
(xyz.0 * {:.10}) + (xyz.1 * {:.10}) + (xyz.2 * {:.10}),
)
}}
"#,
space_name,
inv_e[0][0],
inv_e[0][1],
inv_e[0][2],
inv_e[1][0],
inv_e[1][1],
inv_e[1][2],
inv_e[2][0],
inv_e[2][1],
inv_e[2][2]
)
.as_bytes(),
)
.unwrap();
}
/// Port of the RGBtoXYZ function from the ACES CTL reference implementation.
/// See lib/IlmCtlMath/CtlColorSpace.cpp in the CTL reference implementation.
///
/// This takes the chromaticities of an RGB colorspace and generates a
/// transform matrix from that space to XYZ.
///
/// * `chroma` is the chromaticities.
/// * `y` is the XYZ "Y" value that should map to RGB (1,1,1)
fn rgb_to_xyz(chroma: Chromaticities, y: f64) -> [[f64; 3]; 3] {
// X and Z values of RGB value (1, 1, 1), or "white"
let x = chroma.w.0 * y / chroma.w.1;
let z = (1.0 - chroma.w.0 - chroma.w.1) * y / chroma.w.1;
// Scale factors for matrix rows
let d = chroma.r.0 * (chroma.b.1 - chroma.g.1)
+ chroma.b.0 * (chroma.g.1 - chroma.r.1)
+ chroma.g.0 * (chroma.r.1 - chroma.b.1);
let sr = (x * (chroma.b.1 - chroma.g.1)
- chroma.g.0 * (y * (chroma.b.1 - 1.0) + chroma.b.1 * (x + z))
+ chroma.b.0 * (y * (chroma.g.1 - 1.0) + chroma.g.1 * (x + z)))
/ d;
let sg = (x * (chroma.r.1 - chroma.b.1)
+ chroma.r.0 * (y * (chroma.b.1 - 1.0) + chroma.b.1 * (x + z))
- chroma.b.0 * (y * (chroma.r.1 - 1.0) + chroma.r.1 * (x + z)))
/ d;
let sb = (x * (chroma.g.1 - chroma.r.1)
- chroma.r.0 * (y * (chroma.g.1 - 1.0) + chroma.g.1 * (x + z))
+ chroma.g.0 * (y * (chroma.r.1 - 1.0) + chroma.r.1 * (x + z)))
/ d;
// Assemble the matrix
let mut mat = [[0.0; 3]; 3];
mat[0][0] = sr * chroma.r.0;
mat[0][1] = sg * chroma.g.0;
mat[0][2] = sb * chroma.b.0;
mat[1][0] = sr * chroma.r.1;
mat[1][1] = sg * chroma.g.1;
mat[1][2] = sb * chroma.b.1;
mat[2][0] = sr * (1.0 - chroma.r.0 - chroma.r.1);
mat[2][1] = sg * (1.0 - chroma.g.0 - chroma.g.1);
mat[2][2] = sb * (1.0 - chroma.b.0 - chroma.b.1);
mat
}
/// Calculates the inverse of the given 3x3 matrix.
///
/// Ported to Rust from `gjInverse()` in IlmBase's Imath/ImathMatrix.h
fn inverse(m: [[f64; 3]; 3]) -> [[f64; 3]; 3] {
let mut s = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]];
let mut t = m;
// Forward elimination
for i in 0..2 {
let mut pivot = i;
let mut pivotsize = t[i][i];
if pivotsize < 0.0 {
pivotsize = -pivotsize;
}
for j in (i + 1)..3 {
let mut tmp = t[j][i];
if tmp < 0.0 {
tmp = -tmp;
}
if tmp > pivotsize {
pivot = j;
pivotsize = tmp;
}
}
if pivotsize == 0.0 {
panic!("Cannot invert singular matrix.");
}
if pivot != i {
for j in 0..3 {
let mut tmp = t[i][j];
t[i][j] = t[pivot][j];
t[pivot][j] = tmp;
tmp = s[i][j];
s[i][j] = s[pivot][j];
s[pivot][j] = tmp;
}
}
for j in (i + 1)..3 {
let f = t[j][i] / t[i][i];
for k in 0..3 {
t[j][k] -= f * t[i][k];
s[j][k] -= f * s[i][k];
}
}
}
// Backward substitution
for i in (0..3).rev() {
let f = t[i][i];
if t[i][i] == 0.0 {
panic!("Cannot invert singular matrix.");
}
for j in 0..3 {
t[i][j] /= f;
s[i][j] /= f;
}
for j in 0..i {
let f = t[j][i];
for k in 0..3 {
t[j][k] -= f * t[i][k];
s[j][k] -= f * s[i][k];
}
}
}
s
}