psychopath/src/color.rs
Nathan Vegdahl b698a52f6c Split some more things out into sub-crates.
Also translated the Halton generator to rust and made it a crate
where the code is generated by a build.rs file.
2017-05-11 22:57:59 -07:00

466 lines
13 KiB
Rust

use std::ops::{Add, AddAssign, Mul, MulAssign, Div, DivAssign};
use spectra_xyz::{spectrum_xyz_to_p, EQUAL_ENERGY_REFLECTANCE};
use float4::Float4;
use lerp::Lerp;
use math::faster_exp;
// Minimum and maximum wavelength of light we care about, in nanometers
const WL_MIN: f32 = 380.0;
const WL_MAX: f32 = 700.0;
const WL_RANGE: f32 = WL_MAX - WL_MIN;
const WL_RANGE_Q: f32 = WL_RANGE / 4.0;
pub fn map_0_1_to_wavelength(n: f32) -> f32 {
n * WL_RANGE + WL_MIN
}
pub trait Color {
fn sample_spectrum(&self, wavelength: f32) -> f32;
fn to_spectral_sample(&self, hero_wavelength: f32) -> SpectralSample {
SpectralSample {
e: Float4::new(self.sample_spectrum(nth_wavelength(hero_wavelength, 0)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 1)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 2)),
self.sample_spectrum(nth_wavelength(hero_wavelength, 3))),
hero_wavelength: hero_wavelength,
}
}
}
fn nth_wavelength(hero_wavelength: f32, n: usize) -> f32 {
let wl = hero_wavelength + (WL_RANGE_Q * n as f32);
if wl > WL_MAX { wl - WL_RANGE } else { wl }
}
#[derive(Copy, Clone, Debug)]
pub struct SpectralSample {
pub e: Float4,
hero_wavelength: f32,
}
impl SpectralSample {
pub fn new(wavelength: f32) -> SpectralSample {
debug_assert!(wavelength >= WL_MIN && wavelength <= WL_MAX);
SpectralSample {
e: Float4::splat(0.0),
hero_wavelength: wavelength,
}
}
pub fn from_value(value: f32, wavelength: f32) -> SpectralSample {
debug_assert!(wavelength >= WL_MIN && wavelength <= WL_MAX);
SpectralSample {
e: Float4::splat(value),
hero_wavelength: wavelength,
}
}
pub fn from_parts(e: Float4, wavelength: f32) -> SpectralSample {
debug_assert!(wavelength >= WL_MIN && wavelength <= WL_MAX);
SpectralSample {
e: e,
hero_wavelength: wavelength,
}
}
/// Returns the nth wavelength
fn wl_n(&self, n: usize) -> f32 {
let wl = self.hero_wavelength + (WL_RANGE_Q * n as f32);
if wl > WL_MAX { wl - WL_RANGE } else { wl }
}
}
impl Add for SpectralSample {
type Output = SpectralSample;
fn add(self, rhs: SpectralSample) -> Self::Output {
assert!(self.hero_wavelength == rhs.hero_wavelength);
SpectralSample {
e: self.e + rhs.e,
hero_wavelength: self.hero_wavelength,
}
}
}
impl AddAssign for SpectralSample {
fn add_assign(&mut self, rhs: SpectralSample) {
assert!(self.hero_wavelength == rhs.hero_wavelength);
self.e = self.e + rhs.e;
}
}
impl Mul for SpectralSample {
type Output = SpectralSample;
fn mul(self, rhs: SpectralSample) -> Self::Output {
assert!(self.hero_wavelength == rhs.hero_wavelength);
SpectralSample {
e: self.e * rhs.e,
hero_wavelength: self.hero_wavelength,
}
}
}
impl MulAssign for SpectralSample {
fn mul_assign(&mut self, rhs: SpectralSample) {
assert!(self.hero_wavelength == rhs.hero_wavelength);
self.e = self.e * rhs.e;
}
}
impl Mul<f32> for SpectralSample {
type Output = SpectralSample;
fn mul(self, rhs: f32) -> Self::Output {
SpectralSample {
e: self.e * rhs,
hero_wavelength: self.hero_wavelength,
}
}
}
impl MulAssign<f32> for SpectralSample {
fn mul_assign(&mut self, rhs: f32) {
self.e = self.e * rhs;
}
}
impl Div<f32> for SpectralSample {
type Output = SpectralSample;
fn div(self, rhs: f32) -> Self::Output {
SpectralSample {
e: self.e / rhs,
hero_wavelength: self.hero_wavelength,
}
}
}
impl DivAssign<f32> for SpectralSample {
fn div_assign(&mut self, rhs: f32) {
self.e = self.e / rhs;
}
}
#[derive(Copy, Clone, Debug)]
pub struct XYZ {
pub x: f32,
pub y: f32,
pub z: f32,
}
impl XYZ {
pub fn new(x: f32, y: f32, z: f32) -> XYZ {
XYZ { x: x, y: y, z: z }
}
pub fn from_tuple(xyz: (f32, f32, f32)) -> XYZ {
XYZ {
x: xyz.0,
y: xyz.1,
z: xyz.2,
}
}
pub fn from_wavelength(wavelength: f32, intensity: f32) -> XYZ {
XYZ {
x: x_1931(wavelength) * intensity,
y: y_1931(wavelength) * intensity,
z: z_1931(wavelength) * intensity,
}
}
pub fn from_spectral_sample(ss: &SpectralSample) -> XYZ {
let xyz0 = XYZ::from_wavelength(ss.wl_n(0), ss.e.get_0());
let xyz1 = XYZ::from_wavelength(ss.wl_n(1), ss.e.get_1());
let xyz2 = XYZ::from_wavelength(ss.wl_n(2), ss.e.get_2());
let xyz3 = XYZ::from_wavelength(ss.wl_n(3), ss.e.get_3());
(xyz0 + xyz1 + xyz2 + xyz3) * 0.75
}
pub fn to_tuple(&self) -> (f32, f32, f32) {
(self.x, self.y, self.z)
}
}
impl Color for XYZ {
fn sample_spectrum(&self, wavelength: f32) -> f32 {
xyz_to_spectrum((self.x, self.y, self.z), wavelength)
}
}
impl Lerp for XYZ {
fn lerp(self, other: XYZ, alpha: f32) -> XYZ {
(self * (1.0 - alpha)) + (other * alpha)
}
}
impl Add for XYZ {
type Output = XYZ;
fn add(self, rhs: XYZ) -> Self::Output {
XYZ {
x: self.x + rhs.x,
y: self.y + rhs.y,
z: self.z + rhs.z,
}
}
}
impl AddAssign for XYZ {
fn add_assign(&mut self, rhs: XYZ) {
self.x += rhs.x;
self.y += rhs.y;
self.z += rhs.z;
}
}
impl Mul<f32> for XYZ {
type Output = XYZ;
fn mul(self, rhs: f32) -> Self::Output {
XYZ {
x: self.x * rhs,
y: self.y * rhs,
z: self.z * rhs,
}
}
}
impl MulAssign<f32> for XYZ {
fn mul_assign(&mut self, rhs: f32) {
self.x *= rhs;
self.y *= rhs;
self.z *= rhs;
}
}
impl Div<f32> for XYZ {
type Output = XYZ;
fn div(self, rhs: f32) -> Self::Output {
XYZ {
x: self.x / rhs,
y: self.y / rhs,
z: self.z / rhs,
}
}
}
impl DivAssign<f32> for XYZ {
fn div_assign(&mut self, rhs: f32) {
self.x /= rhs;
self.y /= rhs;
self.z /= rhs;
}
}
/// Converts a color in XYZ colorspace to Rec.709 colorspace.
/// Note: this can result in negative values, because the positive Rec.709
/// colorspace cannot represent all colors in the XYZ colorspace.
#[allow(dead_code)]
pub fn xyz_to_rec709(xyz: (f32, f32, f32)) -> (f32, f32, f32) {
((xyz.0 * 3.2404542) + (xyz.1 * -1.5371385) + (xyz.2 * -0.4985314),
(xyz.0 * -0.9692660) + (xyz.1 * 1.8760108) + (xyz.2 * 0.0415560),
(xyz.0 * 0.0556434) + (xyz.1 * -0.2040259) + (xyz.2 * 1.0572252))
}
/// Converts a color in Rec.709 colorspace to XYZ colorspace.
#[allow(dead_code)]
pub fn rec709_to_xyz(rec: (f32, f32, f32)) -> (f32, f32, f32) {
((rec.0 * 0.4124564) + (rec.1 * 0.3575761) + (rec.2 * 0.1804375),
(rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750),
(rec.0 * 0.0193339) + (rec.1 * 0.1191920) + (rec.2 * 0.9503041))
}
/// Converts a color in XYZ colorspace to an adjusted Rec.709 colorspace
/// with whitepoint E.
/// Note: this is lossy, as negative resulting values are clamped to zero.
#[allow(dead_code)]
pub fn xyz_to_rec709e(xyz: (f32, f32, f32)) -> (f32, f32, f32) {
((xyz.0 * 3.0799600) + (xyz.1 * -1.5371400) + (xyz.2 * -0.5428160),
(xyz.0 * -0.9212590) + (xyz.1 * 1.8760100) + (xyz.2 * 0.0452475),
(xyz.0 * 0.0528874) + (xyz.1 * -0.2040260) + (xyz.2 * 1.1511400))
}
/// Converts a color in an adjusted Rec.709 colorspace with whitepoint E to
/// XYZ colorspace.
#[allow(dead_code)]
pub fn rec709e_to_xyz(rec: (f32, f32, f32)) -> (f32, f32, f32) {
((rec.0 * 0.4339499) + (rec.1 * 0.3762098) + (rec.2 * 0.1898403),
(rec.0 * 0.2126729) + (rec.1 * 0.7151522) + (rec.2 * 0.0721750),
(rec.0 * 0.0177566) + (rec.1 * 0.1094680) + (rec.2 * 0.8727755))
}
/// Samples an CIE 1931 XYZ color at a particular wavelength, according to
/// the method in the paper "Physically Meaningful Rendering using Tristimulus
/// Colours" by Meng et al.
fn xyz_to_spectrum(xyz: (f32, f32, f32), wavelength: f32) -> f32 {
spectrum_xyz_to_p(wavelength, xyz) * (1.0 / EQUAL_ENERGY_REFLECTANCE)
}
/// Close analytic approximations of the CIE 1931 XYZ color curves.
/// From the paper "Simple Analytic Approximations to the CIE XYZ Color Matching
/// Functions" by Wyman et al.
#[allow(dead_code)]
fn x_1931(wavelength: f32) -> f32 {
let t1 = (wavelength - 442.0) * (if wavelength < 442.0 { 0.0624 } else { 0.0374 });
let t2 = (wavelength - 599.8) * (if wavelength < 599.8 { 0.0264 } else { 0.0323 });
let t3 = (wavelength - 501.1) * (if wavelength < 501.1 { 0.0490 } else { 0.0382 });
(0.362 * faster_exp(-0.5 * t1 * t1)) + (1.056 * faster_exp(-0.5 * t2 * t2)) -
(0.065 * faster_exp(-0.5 * t3 * t3))
}
#[allow(dead_code)]
fn y_1931(wavelength: f32) -> f32 {
let t1 = (wavelength - 568.8) * (if wavelength < 568.8 { 0.0213 } else { 0.0247 });
let t2 = (wavelength - 530.9) * (if wavelength < 530.9 { 0.0613 } else { 0.0322 });
(0.821 * faster_exp(-0.5 * t1 * t1)) + (0.286 * faster_exp(-0.5 * t2 * t2))
}
#[allow(dead_code)]
fn z_1931(wavelength: f32) -> f32 {
let t1 = (wavelength - 437.0) * (if wavelength < 437.0 { 0.0845 } else { 0.0278 });
let t2 = (wavelength - 459.0) * (if wavelength < 459.0 { 0.0385 } else { 0.0725 });
(1.217 * faster_exp(-0.5 * t1 * t1)) + (0.681 * faster_exp(-0.5 * t2 * t2))
}
#[cfg(test)]
mod tests {
use super::*;
fn abs_diff_tri(a: (f32, f32, f32), b: (f32, f32, f32)) -> (f32, f32, f32) {
((a.0 - b.0).abs(), (a.1 - b.1).abs(), (a.2 - b.2).abs())
}
#[test]
fn rec709_xyz_01() {
let c1 = (1.0, 1.0, 1.0);
let c2 = rec709_to_xyz(c1);
let c3 = xyz_to_rec709(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709_xyz_02() {
let c1 = (1.0, 1.0, 1.0);
let c2 = xyz_to_rec709(c1);
let c3 = rec709_to_xyz(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709_xyz_03() {
let c1 = (0.9, 0.05, 0.8);
let c2 = rec709_to_xyz(c1);
let c3 = xyz_to_rec709(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709_xyz_04() {
let c1 = (0.9, 0.05, 0.8);
let c2 = xyz_to_rec709(c1);
let c3 = rec709_to_xyz(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_01() {
let c1 = (1.0, 1.0, 1.0);
let c2 = rec709e_to_xyz(c1);
let c3 = xyz_to_rec709e(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_02() {
let c1 = (1.0, 1.0, 1.0);
let c2 = xyz_to_rec709e(c1);
let c3 = rec709e_to_xyz(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_03() {
let c1 = (1.0, 1.0, 1.0);
let c2 = rec709e_to_xyz(c1);
let diff = abs_diff_tri(c1, c2);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_04() {
let c1 = (1.0, 1.0, 1.0);
let c2 = xyz_to_rec709e(c1);
let diff = abs_diff_tri(c1, c2);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_05() {
let c1 = (0.9, 0.05, 0.8);
let c2 = rec709e_to_xyz(c1);
let c3 = xyz_to_rec709e(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
#[test]
fn rec709e_xyz_06() {
let c1 = (0.9, 0.05, 0.8);
let c2 = xyz_to_rec709e(c1);
let c3 = rec709e_to_xyz(c2);
let diff = abs_diff_tri(c1, c3);
assert!(diff.0 < 0.00001);
assert!(diff.1 < 0.00001);
assert!(diff.2 < 0.00001);
}
}