psychopath/src/accel/light_tree.rs
Nathan Vegdahl 6623443e2e Improved .psy file parsing error messages.
Biggest improvement: it gives you line numbers.  But also progress
on better descriptions.
2017-04-10 14:03:01 -07:00

226 lines
6.9 KiB
Rust

use mem_arena::MemArena;
use algorithm::merge_slices_append;
use bbox::BBox;
use lerp::lerp_slice;
use math::{Vector, Point, Normal};
use shading::surface_closure::SurfaceClosure;
use super::LightAccel;
use super::objects_split::sah_split;
#[derive(Copy, Clone, Debug)]
pub struct LightTree<'a> {
nodes: &'a [Node],
bounds: &'a [BBox],
depth: usize,
}
#[derive(Copy, Clone, Debug)]
struct Node {
is_leaf: bool,
bounds_range: (usize, usize),
energy: f32,
child_index: usize,
}
impl<'a> LightTree<'a> {
pub fn from_objects<'b, T, F>(arena: &'a MemArena,
objects: &mut [T],
info_getter: F)
-> LightTree<'a>
where F: 'b + Fn(&T) -> (&'b [BBox], f32)
{
let mut builder = LightTreeBuilder::new();
builder.recursive_build(0, 0, objects, &info_getter);
LightTree {
nodes: arena.copy_slice(&builder.nodes),
bounds: arena.copy_slice(&builder.bounds),
depth: 0,
}
}
}
impl<'a> LightAccel for LightTree<'a> {
fn select(&self,
inc: Vector,
pos: Point,
nor: Normal,
sc: &SurfaceClosure,
time: f32,
n: f32)
-> Option<(usize, f32, f32)> {
if self.nodes.len() == 0 {
return None;
}
let mut node_index = 0;
let mut tot_prob = 1.0;
let mut n = n;
// Calculates the selection probability for a node
let node_prob = |node_ref: &Node| {
let bounds = &self.bounds[node_ref.bounds_range.0..node_ref.bounds_range.1];
let bbox = lerp_slice(bounds, time);
let d = bbox.center() - pos;
let dist2 = d.length2();
let r = bbox.diagonal() * 0.5;
let inv_surface_area = 1.0 / (r * r);
// Get the approximate amount of light contribution from the
// composite light source.
let approx_contrib = {
let mut approx_contrib = 0.0;
let steps = 2;
let fstep = 1.0 / (steps as f32);
for i in 0..steps {
let r2 = {
let step = fstep * (i + 1) as f32;
let r = r * step;
r * r
};
let cos_theta_max = if dist2 <= r2 {
-1.0
} else {
let sin_theta_max2 = (r2 / dist2).min(1.0);
(1.0 - sin_theta_max2).sqrt()
};
approx_contrib += sc.estimate_eval_over_solid_angle(inc, d, nor, cos_theta_max);
}
approx_contrib * fstep
};
node_ref.energy * inv_surface_area * approx_contrib
};
// Traverse down the tree, keeping track of the relative probabilities
while !self.nodes[node_index].is_leaf {
// Calculate the relative probabilities of the two children
let (p1, p2) = {
let p1 = node_prob(&self.nodes[node_index + 1]);
let p2 = node_prob(&self.nodes[self.nodes[node_index].child_index]);
let total = p1 + p2;
if total <= 0.0 {
(0.5, 0.5)
} else {
(p1 / total, p2 / total)
}
};
if n <= p1 {
tot_prob *= p1;
node_index = node_index + 1;
n /= p1;
} else {
tot_prob *= p2;
node_index = self.nodes[node_index].child_index;
n = (n - p1) / p2;
}
}
// Found our light!
Some((self.nodes[node_index].child_index, tot_prob, n))
}
fn approximate_energy(&self) -> f32 {
if self.nodes.len() > 0 {
self.nodes[0].energy
} else {
0.0
}
}
}
struct LightTreeBuilder {
nodes: Vec<Node>,
bounds: Vec<BBox>,
depth: usize,
}
impl LightTreeBuilder {
fn new() -> LightTreeBuilder {
LightTreeBuilder {
nodes: Vec::new(),
bounds: Vec::new(),
depth: 0,
}
}
fn recursive_build<'a, T, F>(&mut self,
offset: usize,
depth: usize,
objects: &mut [T],
info_getter: &F)
-> (usize, (usize, usize))
where F: 'a + Fn(&T) -> (&'a [BBox], f32)
{
let me_index = self.nodes.len();
if objects.len() == 0 {
return (0, (0, 0));
} else if objects.len() == 1 {
// Leaf node
let bi = self.bounds.len();
let (obj_bounds, energy) = info_getter(&objects[0]);
self.bounds.extend(obj_bounds);
self.nodes.push(Node {
is_leaf: true,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: offset,
});
if self.depth < depth {
self.depth = depth;
}
return (me_index, (bi, self.bounds.len()));
} else {
// Not a leaf node
self.nodes.push(Node {
is_leaf: false,
bounds_range: (0, 0),
energy: 0.0,
child_index: 0,
});
// Partition objects.
let (split_index, _) = sah_split(objects, &|obj_ref| info_getter(obj_ref).0);
// Create child nodes
let (_, c1_bounds) =
self.recursive_build(offset, depth + 1, &mut objects[..split_index], info_getter);
let (c2_index, c2_bounds) = self.recursive_build(offset + split_index,
depth + 1,
&mut objects[split_index..],
info_getter);
// Determine bounds
// TODO: do merging without the temporary vec.
let bi = self.bounds.len();
let mut merged = Vec::new();
merge_slices_append(&self.bounds[c1_bounds.0..c1_bounds.1],
&self.bounds[c2_bounds.0..c2_bounds.1],
&mut merged,
|b1, b2| *b1 | *b2);
self.bounds.extend(merged.drain(0..));
// Set node
let energy = self.nodes[me_index + 1].energy + self.nodes[c2_index].energy;
self.nodes[me_index] = Node {
is_leaf: false,
bounds_range: (bi, self.bounds.len()),
energy: energy,
child_index: c2_index,
};
return (me_index, (bi, self.bounds.len()));
}
}
}