psychopath/src/parse/psy.rs
Nathan Vegdahl e0ee0d6dff Change to using a dedicated affine transform type.
This lets certain operations, especially matrix inversion, be
quite a bit faster.  And we don't need anything beyond affine
transformations anyway.
2021-05-14 13:30:28 -07:00

616 lines
21 KiB
Rust

#![allow(dead_code)]
use std::{f32, result::Result};
use nom::{combinator::all_consuming, sequence::tuple, IResult};
use kioku::Arena;
use crate::{
camera::Camera,
color::{rec709_e_to_xyz, Color},
light::WorldLightSource,
math::Transform,
renderer::Renderer,
scene::Scene,
scene::World,
};
use super::{
basics::{ws_f32, ws_u32},
psy_assembly::parse_assembly,
psy_light::parse_distant_disk_light,
DataTree,
};
#[derive(Debug)]
pub enum PsyParseError {
// The first usize for all errors is their byte offset
// into the psy content where they occured.
UnknownError(usize),
UnknownVariant(usize, &'static str), // Error message
ExpectedInternalNode(usize, &'static str), // Error message
ExpectedLeafNode(usize, &'static str), // Error message
MissingNode(usize, &'static str), // Error message
IncorrectLeafData(usize, &'static str), // Error message
WrongNodeCount(usize, &'static str, usize), // Error message, sections found
InstancedMissingData(usize, &'static str, String), // Error message, data name
}
impl PsyParseError {
pub fn print(&self, psy_content: &str) {
match *self {
PsyParseError::UnknownError(offset) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!(
"Line {}: Unknown parse error. If you get this message, please report \
it to the developers so they can improve the error messages.",
line
);
}
PsyParseError::UnknownVariant(offset, error) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {}", line, error);
}
PsyParseError::ExpectedInternalNode(offset, error) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {}", line, error);
}
PsyParseError::ExpectedLeafNode(offset, error) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {}", line, error);
}
PsyParseError::MissingNode(offset, error) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {}", line, error);
}
PsyParseError::IncorrectLeafData(offset, error) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {}", line, error);
}
PsyParseError::WrongNodeCount(offset, error, count) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {} Found: {}", line, error, count);
}
PsyParseError::InstancedMissingData(offset, error, ref data_name) => {
let line = line_count_to_byte_offset(psy_content, offset);
println!("Line {}: {} Data name: '{}'", line, error, data_name);
}
}
}
}
fn line_count_to_byte_offset(text: &str, offset: usize) -> usize {
text[..offset].matches('\n').count() + 1
}
/// Takes in a `DataTree` representing a Scene node and returns
pub fn parse_scene<'a>(
arena: &'a Arena,
tree: &'a DataTree,
) -> Result<Renderer<'a>, PsyParseError> {
// Verify we have the right number of each section
if tree.iter_children_with_type("Output").count() != 1 {
let count = tree.iter_children_with_type("Output").count();
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Output \
section.",
count,
));
}
if tree.iter_children_with_type("RenderSettings").count() != 1 {
let count = tree.iter_children_with_type("RenderSettings").count();
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one \
RenderSettings section.",
count,
));
}
if tree.iter_children_with_type("Camera").count() != 1 {
let count = tree.iter_children_with_type("Camera").count();
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Camera \
section.",
count,
));
}
if tree.iter_children_with_type("World").count() != 1 {
let count = tree.iter_children_with_type("World").count();
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one World section.",
count,
));
}
if tree.iter_children_with_type("Assembly").count() != 1 {
let count = tree.iter_children_with_type("Assembly").count();
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"Scene should have precisely one Root Assembly \
section.",
count,
));
}
// Parse output info
let output_info = parse_output_info(tree.iter_children_with_type("Output").nth(0).unwrap())?;
// Parse render settings
let render_settings = parse_render_settings(
tree.iter_children_with_type("RenderSettings")
.nth(0)
.unwrap(),
)?;
// Parse camera
let camera = parse_camera(
arena,
tree.iter_children_with_type("Camera").nth(0).unwrap(),
)?;
// Parse world
let world = parse_world(arena, tree.iter_children_with_type("World").nth(0).unwrap())?;
// Parse root scene assembly
let assembly = parse_assembly(
arena,
tree.iter_children_with_type("Assembly").nth(0).unwrap(),
)?;
// Put scene together
let scene_name = if let DataTree::Internal { ident, .. } = *tree {
if let Some(name) = ident {
Some(name.to_string())
} else {
None
}
} else {
None
};
let scene = Scene {
name: scene_name,
camera: camera,
world: world,
root: assembly,
};
// Put renderer together
let renderer = Renderer {
output_file: output_info.clone(),
resolution: (
(render_settings.0).0 as usize,
(render_settings.0).1 as usize,
),
spp: render_settings.1 as usize,
seed: render_settings.2,
scene: scene,
};
return Ok(renderer);
}
fn parse_output_info(tree: &DataTree) -> Result<String, PsyParseError> {
if let DataTree::Internal { ref children, .. } = *tree {
let mut found_path = false;
let mut path = String::new();
for child in children {
match *child {
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Path" => {
// Trim and validate
let tc = contents.trim();
if tc.chars().count() < 2 {
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"File path format is \
incorrect.",
));
}
if tc.chars().nth(0).unwrap() != '"' || !tc.ends_with('"') {
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"File paths must be \
surrounded by quotes.",
));
}
let len = tc.len();
let tc = &tc[1..len - 1];
// Parse
// TODO: proper string escaping
found_path = true;
path = tc.to_string();
}
_ => {}
}
}
if found_path {
return Ok(path);
} else {
return Err(PsyParseError::MissingNode(
tree.byte_offset(),
"Output section must contain a Path.",
));
}
} else {
return Err(PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"Output section should be an internal \
node, containing at least a Path.",
));
};
}
fn parse_render_settings(tree: &DataTree) -> Result<((u32, u32), u32, u32), PsyParseError> {
if let DataTree::Internal { ref children, .. } = *tree {
let mut found_res = false;
let mut found_spp = false;
let mut res = (0, 0);
let mut spp = 0;
let mut seed = 0;
for child in children {
match *child {
// Resolution
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Resolution" => {
if let IResult::Ok((_, (w, h))) =
all_consuming(tuple((ws_u32, ws_u32)))(contents)
{
found_res = true;
res = (w, h);
} else {
// Found Resolution, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"Resolution should be specified with two \
integers in the form '[width height]'.",
));
}
}
// SamplesPerPixel
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "SamplesPerPixel" => {
if let IResult::Ok((_, n)) = all_consuming(ws_u32)(contents) {
found_spp = true;
spp = n;
} else {
// Found SamplesPerPixel, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"SamplesPerPixel should be \
an integer specified in \
the form '[samples]'.",
));
}
}
// Seed
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Seed" => {
if let IResult::Ok((_, n)) = all_consuming(ws_u32)(contents) {
seed = n;
} else {
// Found Seed, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"Seed should be an integer \
specified in the form \
'[samples]'.",
));
}
}
_ => {}
}
}
if found_res && found_spp {
return Ok((res, spp, seed));
} else {
return Err(PsyParseError::MissingNode(
tree.byte_offset(),
"RenderSettings must have both Resolution and \
SamplesPerPixel specified.",
));
}
} else {
return Err(PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"RenderSettings section should be an \
internal node, containing at least \
Resolution and SamplesPerPixel.",
));
};
}
fn parse_camera<'a>(arena: &'a Arena, tree: &'a DataTree) -> Result<Camera<'a>, PsyParseError> {
if let DataTree::Internal { ref children, .. } = *tree {
let mut mats = Vec::new();
let mut fovs = Vec::new();
let mut focus_distances = Vec::new();
let mut aperture_radii = Vec::new();
// Parse
for child in children.iter() {
match *child {
// Fov
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Fov" => {
if let IResult::Ok((_, fov)) = all_consuming(ws_f32)(contents) {
fovs.push(fov * (f32::consts::PI / 180.0));
} else {
// Found Fov, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"Fov should be a decimal \
number specified in the \
form '[fov]'.",
));
}
}
// FocalDistance
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "FocalDistance" => {
if let IResult::Ok((_, fd)) = all_consuming(ws_f32)(contents) {
focus_distances.push(fd);
} else {
// Found FocalDistance, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"FocalDistance should be a \
decimal number specified \
in the form '[fov]'.",
));
}
}
// ApertureRadius
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "ApertureRadius" => {
if let IResult::Ok((_, ar)) = all_consuming(ws_f32)(contents) {
aperture_radii.push(ar);
} else {
// Found ApertureRadius, but its contents is not in the right format
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"ApertureRadius should be a \
decimal number specified \
in the form '[fov]'.",
));
}
}
// Transform
DataTree::Leaf {
type_name,
contents,
byte_offset,
} if type_name == "Transform" => {
if let Ok(mat) = parse_matrix(contents) {
mats.push(mat);
} else {
// Found Transform, but its contents is not in the right format
return Err(make_transform_format_error(byte_offset));
}
}
_ => {}
}
}
return Ok(Camera::new(
arena,
&mats,
&fovs,
&aperture_radii,
&focus_distances,
));
} else {
return Err(PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"Camera section should be an internal \
node, containing at least Fov and \
Transform.",
));
}
}
fn parse_world<'a>(arena: &'a Arena, tree: &'a DataTree) -> Result<World<'a>, PsyParseError> {
if tree.is_internal() {
let background_color;
let mut lights: Vec<&dyn WorldLightSource> = Vec::new();
// Parse background shader
let bgs = {
if tree.iter_children_with_type("BackgroundShader").count() != 1 {
return Err(PsyParseError::WrongNodeCount(
tree.byte_offset(),
"World should have precisely one BackgroundShader section.",
tree.iter_children_with_type("BackgroundShader").count(),
));
}
tree.iter_children_with_type("BackgroundShader")
.nth(0)
.unwrap()
};
let bgs_type = {
if bgs.iter_children_with_type("Type").count() != 1 {
return Err(PsyParseError::WrongNodeCount(
bgs.byte_offset(),
"BackgroundShader should have \
precisely one Type specified.",
bgs.iter_children_with_type("Type").count(),
));
}
if let DataTree::Leaf { contents, .. } =
*bgs.iter_children_with_type("Type").nth(0).unwrap()
{
contents.trim()
} else {
return Err(PsyParseError::ExpectedLeafNode(
bgs.byte_offset(),
"BackgroundShader's Type should be a \
leaf node.",
));
}
};
match bgs_type {
"Color" => {
if let Some(&DataTree::Leaf {
contents,
byte_offset,
..
}) = bgs.iter_children_with_type("Color").nth(0)
{
if let Ok(color) = parse_color(contents) {
background_color = color;
} else {
return Err(PsyParseError::IncorrectLeafData(
byte_offset,
"Color should be specified \
with three decimal numbers \
in the form '[R G B]'.",
));
}
} else {
return Err(PsyParseError::MissingNode(
bgs.byte_offset(),
"BackgroundShader's Type is Color, \
but no Color is specified.",
));
}
}
_ => {
return Err(PsyParseError::UnknownVariant(
bgs.byte_offset(),
"The specified BackgroundShader Type \
isn't a recognized type.",
))
}
}
// Parse light sources
for child in tree.iter_children() {
match *child {
DataTree::Internal { type_name, .. } if type_name == "DistantDiskLight" => {
lights.push(arena.alloc(parse_distant_disk_light(arena, child)?));
}
_ => {}
}
}
// Build and return the world
return Ok(World {
background_color: background_color,
lights: arena.copy_slice(&lights),
});
} else {
return Err(PsyParseError::ExpectedInternalNode(
tree.byte_offset(),
"World section should be an internal \
node, containing at least a \
BackgroundShader.",
));
}
}
pub fn parse_matrix(contents: &str) -> Result<Transform, PsyParseError> {
if let IResult::Ok((leftover, ns)) = all_consuming(tuple((
ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32, ws_f32,
ws_f32, ws_f32, ws_f32, ws_f32, ws_f32,
)))(contents)
{
if leftover.is_empty() {
return Ok(Transform::new_from_values(
// We throw away the last row, since it's not necessarily affine.
// TODO: is there a more correct way to handle this?
ns.0, ns.4, ns.8, ns.12, ns.1, ns.5, ns.9, ns.13, ns.2, ns.6, ns.10, ns.14,
));
}
}
return Err(PsyParseError::UnknownError(0));
}
pub fn make_transform_format_error(byte_offset: usize) -> PsyParseError {
PsyParseError::IncorrectLeafData(
byte_offset,
"Transform should be sixteen integers specified in \
the form '[# # # # # # # # # # # # # # # #]'.",
)
}
pub fn parse_color(contents: &str) -> Result<Color, PsyParseError> {
let items: Vec<_> = contents.split(',').map(|s| s.trim()).collect();
if items.len() != 2 {
return Err(PsyParseError::UnknownError(0));
}
match items[0] {
"rec709" => {
if let IResult::Ok((_, color)) = tuple((ws_f32, ws_f32, ws_f32))(items[1]) {
return Ok(Color::new_xyz(rec709_e_to_xyz(color)));
} else {
return Err(PsyParseError::UnknownError(0));
}
}
"blackbody" => {
if let IResult::Ok((_, (temperature, factor))) = tuple((ws_f32, ws_f32))(items[1]) {
return Ok(Color::new_blackbody(temperature, factor));
} else {
return Err(PsyParseError::UnknownError(0));
}
}
"color_temperature" => {
if let IResult::Ok((_, (temperature, factor))) = tuple((ws_f32, ws_f32))(items[1]) {
return Ok(Color::new_temperature(temperature, factor));
} else {
return Err(PsyParseError::UnknownError(0));
}
}
_ => return Err(PsyParseError::UnknownError(0)),
}
}