psychopath/src/shading/surface_closure.rs

755 lines
24 KiB
Rust

#![allow(dead_code)]
use std::f32::consts::PI as PI_32;
use glam::Vec4;
use crate::{
color::{Color, SpectralSample},
lerp::{lerp, Lerp},
math::{clamp, dot, zup_to_vec, Normal, Vector},
sampling::cosine_sample_hemisphere,
};
const INV_PI: f32 = 1.0 / PI_32;
const H_PI: f32 = PI_32 / 2.0;
/// A surface closure, specifying a BSDF for a point on a surface.
#[derive(Debug, Copy, Clone)]
pub enum SurfaceClosure {
// Normal surface closures.
Lambert(Color),
GGX {
color: Color,
roughness: f32,
fresnel: f32, // [0.0, 1.0] determines how much fresnel reflection comes into play
},
// Special closures that need special handling by the renderer.
Emit(Color),
}
use self::SurfaceClosure::*;
/// Note when implementing new BSDFs: both the the color filter and pdf returned from
/// `sample()` and `evaluate()` should be identical for the same parameters and outgoing
/// light direction.
impl SurfaceClosure {
/// Returns whether the closure has a delta distribution or not.
pub fn is_delta(&self) -> bool {
match *self {
Lambert(_) => false,
GGX { roughness, .. } => roughness == 0.0,
Emit(_) => false,
}
}
/// Given an incoming ray and sample values, generates an outgoing ray and
/// color filter.
///
/// inc: Incoming light direction.
/// nor: The shading surface normal at the surface point.
/// nor_g: The geometric surface normal at the surface point.
/// uv: The sampling values.
/// wavelength: Hero wavelength to generate the color filter for.
///
/// Returns a tuple with the generated outgoing light direction, color filter, and pdf.
pub fn sample(
&self,
inc: Vector,
nor: Normal,
nor_g: Normal,
uv: (f32, f32),
wavelength: f32,
) -> (Vector, SpectralSample, f32) {
match *self {
Lambert(color) => lambert_closure::sample(color, inc, nor, nor_g, uv, wavelength),
GGX {
color,
roughness,
fresnel,
} => ggx_closure::sample(color, roughness, fresnel, inc, nor, nor_g, uv, wavelength),
Emit(color) => emit_closure::sample(color, inc, nor, nor_g, uv, wavelength),
}
}
/// Evaluates the closure for the given incoming and outgoing rays.
///
/// inc: The incoming light direction.
/// out: The outgoing light direction.
/// nor: The shading surface normal at the surface point.
/// nor_g: The geometric surface normal at the surface point.
/// wavelength: Hero wavelength to generate the color filter for.
///
/// Returns the resulting filter color and pdf of if this had been generated
/// by `sample()`.
pub fn evaluate(
&self,
inc: Vector,
out: Vector,
nor: Normal,
nor_g: Normal,
wavelength: f32,
) -> (SpectralSample, f32) {
match *self {
Lambert(color) => lambert_closure::evaluate(color, inc, out, nor, nor_g, wavelength),
GGX {
color,
roughness,
fresnel,
} => ggx_closure::evaluate(color, roughness, fresnel, inc, out, nor, nor_g, wavelength),
Emit(color) => emit_closure::evaluate(color, inc, out, nor, nor_g, wavelength),
}
}
/// Returns an estimate of the sum total energy that evaluate() would return
/// when integrated over a spherical light source with a center at relative
/// position 'to_light_center' and squared radius 'light_radius_squared'.
/// This is used for importance sampling, so does not need to be exact,
/// but it does need to be non-zero anywhere that an exact solution would
/// be non-zero.
pub fn estimate_eval_over_sphere_light(
&self,
inc: Vector,
to_light_center: Vector,
light_radius_squared: f32,
nor: Normal,
nor_g: Normal,
) -> f32 {
match *self {
Lambert(color) => lambert_closure::estimate_eval_over_sphere_light(
color,
inc,
to_light_center,
light_radius_squared,
nor,
nor_g,
),
GGX {
color,
roughness,
fresnel,
} => ggx_closure::estimate_eval_over_sphere_light(
color,
roughness,
fresnel,
inc,
to_light_center,
light_radius_squared,
nor,
nor_g,
),
Emit(color) => emit_closure::estimate_eval_over_sphere_light(
color,
inc,
to_light_center,
light_radius_squared,
nor,
nor_g,
),
}
}
/// Returns the post-compression size of this closure.
pub fn compressed_size(&self) -> usize {
1 + match *self {
Lambert(color) => color.compressed_size(),
GGX { color, .. } => {
2 // Roughness
+ 2 // Fresnel
+ color.compressed_size() // Color
}
Emit(color) => color.compressed_size(),
}
}
/// Writes the compressed form of this closure to `out_data`.
///
/// `out_data` must be at least `compressed_size()` bytes long, otherwise
/// this method will panic.
///
/// Returns the number of bytes written.
pub fn write_compressed(&self, out_data: &mut [u8]) -> usize {
match *self {
Lambert(color) => {
out_data[0] = 0; // Discriminant
color.write_compressed(&mut out_data[1..]);
}
GGX {
color,
roughness,
fresnel,
} => {
out_data[0] = 1; // Discriminant
// Roughness and fresnel (we write these first because they are
// constant-size, whereas the color is variable-size, so this
// makes things a little easier).
let rgh =
((roughness.max(0.0).min(1.0) * std::u16::MAX as f32) as u16).to_le_bytes();
let frs = ((fresnel.max(0.0).min(1.0) * std::u16::MAX as f32) as u16).to_le_bytes();
out_data[1] = rgh[0];
out_data[2] = rgh[1];
out_data[3] = frs[0];
out_data[4] = frs[1];
// Color
color.write_compressed(&mut out_data[5..]); // Color
}
Emit(color) => {
out_data[0] = 2; // Discriminant
color.write_compressed(&mut out_data[1..]);
}
}
self.compressed_size()
}
/// Constructs a SurfaceClosure from compressed closure data, and also
/// returns the number of bytes consumed from `in_data`.
pub fn from_compressed(in_data: &[u8]) -> (SurfaceClosure, usize) {
match in_data[0] {
0 => {
// Lambert
let (col, size) = Color::from_compressed(&in_data[1..]);
(SurfaceClosure::Lambert(col), 1 + size)
}
1 => {
// GGX
let mut rgh = [0u8; 2];
let mut frs = [0u8; 2];
rgh[0] = in_data[1];
rgh[1] = in_data[2];
frs[0] = in_data[3];
frs[1] = in_data[4];
let rgh = u16::from_le_bytes(rgh) as f32 * (1.0 / std::u16::MAX as f32);
let frs = u16::from_le_bytes(frs) as f32 * (1.0 / std::u16::MAX as f32);
let (col, size) = Color::from_compressed(&in_data[5..]);
(
SurfaceClosure::GGX {
color: col,
roughness: rgh,
fresnel: frs,
},
5 + size,
)
}
2 => {
// Emit
let (col, size) = Color::from_compressed(&in_data[1..]);
(SurfaceClosure::Emit(col), 1 + size)
}
_ => unreachable!(),
}
}
}
impl Lerp for SurfaceClosure {
fn lerp(self, other: SurfaceClosure, alpha: f32) -> SurfaceClosure {
match (self, other) {
(Lambert(col1), Lambert(col2)) => Lambert(lerp(col1, col2, alpha)),
(
GGX {
color: col1,
roughness: rgh1,
fresnel: frs1,
},
GGX {
color: col2,
roughness: rgh2,
fresnel: frs2,
},
) => GGX {
color: lerp(col1, col2, alpha),
roughness: lerp(rgh1, rgh2, alpha),
fresnel: lerp(frs1, frs2, alpha),
},
(Emit(col1), Emit(col2)) => Emit(lerp(col1, col2, alpha)),
_ => panic!("Cannot lerp between different surface closure types."),
}
}
}
/// Lambert closure code.
mod lambert_closure {
use super::*;
pub fn sample(
color: Color,
inc: Vector,
nor: Normal,
nor_g: Normal,
uv: (f32, f32),
wavelength: f32,
) -> (Vector, SpectralSample, f32) {
let (nn, flipped_nor_g) = if dot(nor_g.into_vector(), inc) <= 0.0 {
(nor.normalized().into_vector(), nor_g.into_vector())
} else {
(-nor.normalized().into_vector(), -nor_g.into_vector())
};
// Generate a random ray direction in the hemisphere
// of the shading surface normal.
let dir = cosine_sample_hemisphere(uv.0, uv.1);
let pdf = dir.z() * INV_PI;
let out = zup_to_vec(dir, nn);
// Make sure it's not on the wrong side of the geometric normal.
if dot(flipped_nor_g, out) >= 0.0 {
(out, color.to_spectral_sample(wavelength) * pdf, pdf)
} else {
(out, SpectralSample::new(0.0), 0.0)
}
}
pub fn evaluate(
color: Color,
inc: Vector,
out: Vector,
nor: Normal,
nor_g: Normal,
wavelength: f32,
) -> (SpectralSample, f32) {
let (nn, flipped_nor_g) = if dot(nor_g.into_vector(), inc) <= 0.0 {
(nor.normalized().into_vector(), nor_g.into_vector())
} else {
(-nor.normalized().into_vector(), -nor_g.into_vector())
};
if dot(flipped_nor_g, out) >= 0.0 {
let fac = dot(nn, out.normalized()).max(0.0) * INV_PI;
(color.to_spectral_sample(wavelength) * fac, fac)
} else {
(SpectralSample::new(0.0), 0.0)
}
}
pub fn estimate_eval_over_sphere_light(
_color: Color,
inc: Vector,
to_light_center: Vector,
light_radius_squared: f32,
nor: Normal,
nor_g: Normal,
) -> f32 {
let _ = nor_g; // Not using this, silence warning
// Analytically calculates lambert shading from a uniform light source
// subtending a circular solid angle.
// Only works for solid angle subtending equal to or less than a hemisphere.
//
// Formula taken from "Area Light Sources for Real-Time Graphics"
// by John M. Snyder
fn sphere_lambert(nlcos: f32, rcos: f32) -> f32 {
assert!(nlcos >= -1.0 && nlcos <= 1.0);
assert!(rcos >= 0.0 && rcos <= 1.0);
let nlsin: f32 = (1.0 - (nlcos * nlcos)).sqrt();
let rsin2: f32 = 1.0 - (rcos * rcos);
let rsin: f32 = rsin2.sqrt();
let ysin: f32 = rcos / nlsin;
let ycos2: f32 = 1.0 - (ysin * ysin);
let ycos: f32 = ycos2.sqrt();
let g: f32 = (-2.0 * nlsin * rcos * ycos) + H_PI - ysin.asin() + (ysin * ycos);
let h: f32 = nlcos * ((ycos * (rsin2 - ycos2).sqrt()) + (rsin2 * (ycos / rsin).asin()));
let nl: f32 = nlcos.acos();
let r: f32 = rcos.acos();
if nl < (H_PI - r) {
nlcos * rsin2
} else if nl < H_PI {
(nlcos * rsin2) + g - h
} else if nl < (H_PI + r) {
(g + h) * INV_PI
} else {
0.0
}
}
let dist2 = to_light_center.length2();
if dist2 <= light_radius_squared {
return (light_radius_squared / dist2).min(4.0);
} else {
let sin_theta_max2 = (light_radius_squared / dist2).min(1.0);
let cos_theta_max = (1.0 - sin_theta_max2).sqrt();
let v = to_light_center.normalized();
let nn = if dot(nor_g.into_vector(), inc) <= 0.0 {
nor.normalized()
} else {
-nor.normalized()
}
.into_vector();
let cos_nv = dot(nn, v).max(-1.0).min(1.0);
// Alt implementation from the SPI paper.
// Worse sampling, but here for reference.
// {
// let nl_ang = cos_nv.acos();
// let rad_ang = cos_theta_max.acos();
// let min_ang = (nl_ang - rad_ang).max(0.0);
// let lamb = min_ang.cos().max(0.0);
// return lamb / dist2;
// }
return sphere_lambert(cos_nv, cos_theta_max);
}
}
}
mod ggx_closure {
use super::*;
// Makes sure values are in a valid range
pub fn validate(roughness: f32, fresnel: f32) {
debug_assert!(fresnel >= 0.0 && fresnel <= 1.0);
debug_assert!(roughness >= 0.0 && roughness <= 1.0);
}
pub fn sample(
col: Color,
roughness: f32,
fresnel: f32,
inc: Vector,
nor: Normal,
nor_g: Normal,
uv: (f32, f32),
wavelength: f32,
) -> (Vector, SpectralSample, f32) {
// Get normalized surface normal
let (nn, flipped_nor_g) = if dot(nor_g.into_vector(), inc) <= 0.0 {
(nor.normalized().into_vector(), nor_g.into_vector())
} else {
(-nor.normalized().into_vector(), -nor_g.into_vector())
};
// Generate a random ray direction in the hemisphere
// of the surface.
let theta_cos = half_theta_sample(uv.0, roughness);
let theta_sin = (1.0 - (theta_cos * theta_cos)).sqrt();
let angle = uv.1 * PI_32 * 2.0;
let mut half_dir = Vector::new(angle.cos() * theta_sin, angle.sin() * theta_sin, theta_cos);
half_dir = zup_to_vec(half_dir, nn).normalized();
let out = inc - (half_dir * 2.0 * dot(inc, half_dir));
// Make sure it's not on the wrong side of the geometric normal.
if dot(flipped_nor_g, out) >= 0.0 {
let (filter, pdf) = evaluate(col, roughness, fresnel, inc, out, nor, nor_g, wavelength);
(out, filter, pdf)
} else {
(out, SpectralSample::new(0.0), 0.0)
}
}
pub fn evaluate(
col: Color,
roughness: f32,
fresnel: f32,
inc: Vector,
out: Vector,
nor: Normal,
nor_g: Normal,
wavelength: f32,
) -> (SpectralSample, f32) {
// Calculate needed vectors, normalized
let aa = -inc.normalized(); // Vector pointing to where "in" came from
let bb = out.normalized(); // Out
let hh = (aa + bb).normalized(); // Half-way between aa and bb
// Surface normal
let (nn, flipped_nor_g) = if dot(nor_g.into_vector(), inc) <= 0.0 {
(nor.normalized().into_vector(), nor_g.into_vector())
} else {
(-nor.normalized().into_vector(), -nor_g.into_vector())
};
// Make sure everything's on the correct side of the surface
if dot(nn, aa) < 0.0 || dot(nn, bb) < 0.0 || dot(flipped_nor_g, bb) < 0.0 {
return (SpectralSample::new(0.0), 0.0);
}
// Calculate needed dot products
let na = clamp(dot(nn, aa), -1.0, 1.0);
let nb = clamp(dot(nn, bb), -1.0, 1.0);
let ha = clamp(dot(hh, aa), -1.0, 1.0);
let hb = clamp(dot(hh, bb), -1.0, 1.0);
let nh = clamp(dot(nn, hh), -1.0, 1.0);
// Calculate F - Fresnel
let col_f = {
let spectrum_sample = col.to_spectral_sample(wavelength);
let rev_fresnel = 1.0 - fresnel;
let c0 = lerp(
schlick_fresnel_from_fac(spectrum_sample.e[0], hb),
spectrum_sample.e[0],
rev_fresnel,
);
let c1 = lerp(
schlick_fresnel_from_fac(spectrum_sample.e[1], hb),
spectrum_sample.e[1],
rev_fresnel,
);
let c2 = lerp(
schlick_fresnel_from_fac(spectrum_sample.e[2], hb),
spectrum_sample.e[2],
rev_fresnel,
);
let c3 = lerp(
schlick_fresnel_from_fac(spectrum_sample.e[3], hb),
spectrum_sample.e[3],
rev_fresnel,
);
SpectralSample::from_parts(Vec4::new(c0, c1, c2, c3), wavelength)
};
// Calculate everything else
if roughness == 0.0 {
// If sharp mirror, just return col * fresnel factor
return (col_f, 0.0);
} else {
// Calculate D - Distribution
let dist = ggx_d(nh, roughness) / na;
// Calculate G1 and G2- Geometric microfacet shadowing
let g1 = ggx_g(ha, na, roughness);
let g2 = ggx_g(hb, nb, roughness);
// Final result
(col_f * (dist * g1 * g2) * INV_PI, dist * INV_PI)
}
}
pub fn estimate_eval_over_sphere_light(
_col: Color,
roughness: f32,
_fresnel: f32,
inc: Vector,
to_light_center: Vector,
light_radius_squared: f32,
nor: Normal,
nor_g: Normal,
) -> f32 {
// TODO: all of the stuff in this function is horribly hacky.
// Find a proper way to approximate the light contribution from a
// solid angle.
let _ = nor_g; // Not using this, silence warning
let dist2 = to_light_center.length2();
let sin_theta_max2 = (light_radius_squared / dist2).min(1.0);
let cos_theta_max = (1.0 - sin_theta_max2).sqrt();
assert!(cos_theta_max >= -1.0);
assert!(cos_theta_max <= 1.0);
// Surface normal
let nn = if dot(nor.into_vector(), inc) < 0.0 {
nor.normalized()
} else {
-nor.normalized() // If back-facing, flip normal
}
.into_vector();
let aa = -inc.normalized(); // Vector pointing to where "in" came from
let bb = to_light_center.normalized(); // Out
// Brute-force method
//let mut fac = 0.0;
//const N: usize = 256;
//for i in 0..N {
// let uu = Halton::sample(0, i);
// let vv = Halton::sample(1, i);
// let mut samp = uniform_sample_cone(uu, vv, cos_theta_max);
// samp = zup_to_vec(samp, bb).normalized();
// if dot(nn, samp) > 0.0 {
// let hh = (aa+samp).normalized();
// fac += ggx_d(dot(nn, hh), roughness);
// }
//}
//fac /= N * N;
// Approximate method
let theta = cos_theta_max.acos();
let hh = (aa + bb).normalized();
let nh = clamp(dot(nn, hh), -1.0, 1.0);
let fac = ggx_d(nh, (1.0f32).min(roughness.sqrt() + (2.0 * theta / PI_32)));
fac * (1.0f32).min(1.0 - cos_theta_max) * INV_PI
}
//----------------------------------------------------
// Returns the cosine of the half-angle that should be sampled, given
// a random variable in [0,1]
fn half_theta_sample(u: f32, rough: f32) -> f32 {
let rough2 = rough * rough;
// Calculate top half of equation
let top = 1.0 - u;
// Calculate bottom half of equation
let bottom = 1.0 + ((rough2 - 1.0) * u);
(top / bottom).sqrt()
}
/// The GGX microfacet distribution function.
///
/// nh: cosine of the angle between the surface normal and the microfacet normal.
fn ggx_d(nh: f32, rough: f32) -> f32 {
if nh <= 0.0 {
return 0.0;
}
let rough2 = rough * rough;
let tmp = 1.0 + ((rough2 - 1.0) * (nh * nh));
rough2 / (PI_32 * tmp * tmp)
}
/// The GGX Smith shadow-masking function.
///
/// vh: cosine of the angle between the view vector and the microfacet normal.
/// vn: cosine of the angle between the view vector and surface normal.
fn ggx_g(vh: f32, vn: f32, rough: f32) -> f32 {
if (vh * vn) <= 0.0 {
0.0
} else {
2.0 / (1.0 + (1.0 + rough * rough * (1.0 - vn * vn) / (vn * vn)).sqrt())
}
}
}
/// Emit closure code.
///
/// NOTE: this needs to be handled specially by the integrator! It does not
/// behave like a standard closure!
mod emit_closure {
use super::*;
pub fn sample(
color: Color,
inc: Vector,
nor: Normal,
nor_g: Normal,
uv: (f32, f32),
wavelength: f32,
) -> (Vector, SpectralSample, f32) {
let _ = (inc, nor, nor_g, uv); // Not using these, silence warning
(
Vector::new(0.0, 0.0, 0.0),
color.to_spectral_sample(wavelength),
1.0,
)
}
pub fn evaluate(
color: Color,
inc: Vector,
out: Vector,
nor: Normal,
nor_g: Normal,
wavelength: f32,
) -> (SpectralSample, f32) {
let _ = (inc, out, nor, nor_g); // Not using these, silence warning
(color.to_spectral_sample(wavelength), 1.0)
}
pub fn estimate_eval_over_sphere_light(
_color: Color,
_inc: Vector,
_to_light_center: Vector,
_light_radius_squared: f32,
_nor: Normal,
_nor_g: Normal,
) -> f32 {
// TODO: what to do here?
unimplemented!()
}
}
//=============================================================================
/// Utility function that calculates the fresnel reflection factor of a given
/// incoming ray against a surface with the given normal-reflectance factor.
///
/// `frensel_fac`: The ratio of light reflected back if the ray were to
/// hit the surface head-on (perpendicular to the surface).
/// `c`: The cosine of the angle between the incoming light and the
/// surface's normal. Probably calculated e.g. with a normalized
/// dot product.
#[allow(dead_code)]
fn dielectric_fresnel_from_fac(fresnel_fac: f32, c: f32) -> f32 {
let tmp1 = fresnel_fac.sqrt() - 1.0;
// Protect against divide by zero.
if tmp1.abs() < 0.000_001 {
return 1.0;
}
// Find the ior ratio
let tmp2 = (-2.0 / tmp1) - 1.0;
let ior_ratio = tmp2 * tmp2;
// Calculate fresnel factor
dielectric_fresnel(ior_ratio, c)
}
/// Schlick's approximation version of `dielectric_fresnel_from_fac()` above.
#[allow(dead_code)]
fn schlick_fresnel_from_fac(frensel_fac: f32, c: f32) -> f32 {
let c1 = 1.0 - c;
let c2 = c1 * c1;
frensel_fac + ((1.0 - frensel_fac) * c1 * c2 * c2)
}
/// Utility function that calculates the fresnel reflection factor of a given
/// incoming ray against a surface with the given ior outside/inside ratio.
///
/// `ior_ratio`: The ratio of the outside material ior (probably 1.0 for air)
/// over the inside ior.
/// `c`: The cosine of the angle between the incoming light and the
/// surface's normal. Probably calculated e.g. with a normalized
/// dot product.
#[allow(dead_code)]
fn dielectric_fresnel(ior_ratio: f32, c: f32) -> f32 {
let g = (ior_ratio - 1.0 + (c * c)).sqrt();
let f1 = g - c;
let f2 = g + c;
let f3 = (f1 * f1) / (f2 * f2);
let f4 = (c * f2) - 1.0;
let f5 = (c * f1) + 1.0;
let f6 = 1.0 + ((f4 * f4) / (f5 * f5));
0.5 * f3 * f6
}
/// Schlick's approximation of the fresnel reflection factor.
///
/// Same interface as `dielectric_fresnel()`, above.
#[allow(dead_code)]
fn schlick_fresnel(ior_ratio: f32, c: f32) -> f32 {
let f1 = (1.0 - ior_ratio) / (1.0 + ior_ratio);
let f2 = f1 * f1;
let c1 = 1.0 - c;
let c2 = c1 * c1;
f2 + ((1.0 - f2) * c1 * c2 * c2)
}