psychopath/src/surface/triangle.rs

184 lines
5.4 KiB
Rust

#![allow(dead_code)]
use crate::{
fp_utils::fp_gamma,
math::{Point, Vector},
};
#[derive(Debug, Copy, Clone)]
pub struct RayTriPrecompute {
i: (usize, usize, usize),
s: (f32, f32, f32),
}
impl RayTriPrecompute {
pub fn new(ray_dir: Vector) -> RayTriPrecompute {
// Calculate the permuted dimension indices for the new ray space.
let (xi, yi, zi) = {
let xabs = ray_dir.x().abs();
let yabs = ray_dir.y().abs();
let zabs = ray_dir.z().abs();
if xabs > yabs && xabs > zabs {
(1, 2, 0)
} else if yabs > zabs {
(2, 0, 1)
} else {
(0, 1, 2)
}
};
let dir_x = ray_dir.get_n(xi);
let dir_y = ray_dir.get_n(yi);
let dir_z = ray_dir.get_n(zi);
// Calculate shear constants.
let sx = dir_x / dir_z;
let sy = dir_y / dir_z;
let sz = 1.0 / dir_z;
RayTriPrecompute {
i: (xi, yi, zi),
s: (sx, sy, sz),
}
}
}
/// Intersects `ray` with `tri`, returning `Some((t, b0, b1, b2))`, or `None`
/// if no intersection.
///
/// Returned values:
///
/// * `t` is the ray t at the hit point.
/// * `b0`, `b1`, and `b2` are the barycentric coordinates of the triangle at
/// the hit point.
///
/// Uses the ray-triangle test from the paper "Watertight Ray/Triangle
/// Intersection" by Woop et al.
pub fn intersect_ray(
ray_orig: Point,
ray_pre: RayTriPrecompute,
ray_max_t: f32,
tri: (Point, Point, Point),
) -> Option<(f32, f32, f32, f32)> {
// Calculate vertices in ray space.
let p0 = tri.0 - ray_orig;
let p1 = tri.1 - ray_orig;
let p2 = tri.2 - ray_orig;
let p0x = p0.get_n(ray_pre.i.0) - (ray_pre.s.0 * p0.get_n(ray_pre.i.2));
let p0y = p0.get_n(ray_pre.i.1) - (ray_pre.s.1 * p0.get_n(ray_pre.i.2));
let p1x = p1.get_n(ray_pre.i.0) - (ray_pre.s.0 * p1.get_n(ray_pre.i.2));
let p1y = p1.get_n(ray_pre.i.1) - (ray_pre.s.1 * p1.get_n(ray_pre.i.2));
let p2x = p2.get_n(ray_pre.i.0) - (ray_pre.s.0 * p2.get_n(ray_pre.i.2));
let p2y = p2.get_n(ray_pre.i.1) - (ray_pre.s.1 * p2.get_n(ray_pre.i.2));
// Calculate scaled barycentric coordinates.
let mut e0 = (p1x * p2y) - (p1y * p2x);
let mut e1 = (p2x * p0y) - (p2y * p0x);
let mut e2 = (p0x * p1y) - (p0y * p1x);
// Fallback to test against edges using double precision.
if e0 == 0.0 || e1 == 0.0 || e2 == 0.0 {
e0 = ((p1x as f64 * p2y as f64) - (p1y as f64 * p2x as f64)) as f32;
e1 = ((p2x as f64 * p0y as f64) - (p2y as f64 * p0x as f64)) as f32;
e2 = ((p0x as f64 * p1y as f64) - (p0y as f64 * p1x as f64)) as f32;
}
// Check if the ray hit the triangle.
if (e0 < 0.0 || e1 < 0.0 || e2 < 0.0) && (e0 > 0.0 || e1 > 0.0 || e2 > 0.0) {
return None;
}
// Determinant
let det = e0 + e1 + e2;
if det == 0.0 {
return None;
}
// Calculate t of hitpoint.
let p0z = ray_pre.s.2 * p0.get_n(ray_pre.i.2);
let p1z = ray_pre.s.2 * p1.get_n(ray_pre.i.2);
let p2z = ray_pre.s.2 * p2.get_n(ray_pre.i.2);
let t_scaled = (e0 * p0z) + (e1 * p1z) + (e2 * p2z);
// Check if the hitpoint t is within ray min/max t.
if (det > 0.0 && (t_scaled <= 0.0 || t_scaled > (ray_max_t * det)))
|| (det < 0.0 && (t_scaled >= 0.0 || t_scaled < (ray_max_t * det)))
{
return None;
}
// Calculate t and the hitpoint barycentric coordinates.
let inv_det = 1.0 / det;
let b0 = e0 * inv_det;
let b1 = e1 * inv_det;
let b2 = e2 * inv_det;
let t = t_scaled * inv_det;
// Check error bounds on t for very close hit points.
// The technique used here is from "Physically Based Rendering: From Theory
// to Implementation" third edition by Pharr et al.
{
// Calculate delta z
let max_zt = max_abs_3(p0z, p1z, p2z);
let dz = fp_gamma(3) * max_zt;
// Calculate delta x and y
let max_xt = max_abs_3(p0x, p1x, p2x);
let max_yt = max_abs_3(p0y, p1y, p2y);
let dx = fp_gamma(5) * (max_xt + max_zt);
let dy = fp_gamma(5) * (max_yt + max_zt);
// Calculate delta e
let de = 2.0 * ((fp_gamma(2) * max_xt * max_yt) + (dy * max_xt + dx * max_yt));
// Calculate delta t
let max_e = max_abs_3(e0, e1, e2);
let dt =
3.0 * ((fp_gamma(3) * max_e * max_zt) + (de * max_zt + dz * max_e)) * inv_det.abs();
// Finally, do the check
if t <= dt {
return None;
}
}
// Return t and barycentric coordinates
Some((t, b0, b1, b2))
}
/// Calculates a point on a triangle's surface at the given barycentric
/// coordinates.
///
/// Returns the point and the error magnitude of the point.
pub fn surface_point(tri: (Point, Point, Point), bary: (f32, f32, f32)) -> (Point, f32) {
let pos = ((tri.0.into_vector() * bary.0)
+ (tri.1.into_vector() * bary.1)
+ (tri.2.into_vector() * bary.2))
.into_point();
let pos_err = (((tri.0.into_vector().abs() * bary.0)
+ (tri.1.into_vector().abs() * bary.1)
+ (tri.2.into_vector().abs() * bary.2))
* fp_gamma(7))
.co
.h_max();
(pos, pos_err)
}
fn max_abs_3(a: f32, b: f32, c: f32) -> f32 {
let a = a.abs();
let b = b.abs();
let c = c.abs();
if a > b && a > c {
a
} else if b > c {
b
} else {
c
}
}