Committing at this point because: 1. It compiles. 2. Rendering is totally wrong, but in a cool way.
872 lines
34 KiB
Rust
872 lines
34 KiB
Rust
use std::{
|
|
cell::Cell,
|
|
cmp,
|
|
cmp::min,
|
|
io::{self, Write},
|
|
sync::{Mutex, RwLock},
|
|
};
|
|
|
|
use crossbeam::sync::MsQueue;
|
|
use scoped_threadpool::Pool;
|
|
|
|
use crate::{
|
|
accel::ACCEL_NODE_RAY_TESTS,
|
|
color::{map_0_1_to_wavelength, SpectralSample, XYZ},
|
|
fp_utils::robust_ray_origin,
|
|
image::Image,
|
|
math::{probit, upper_power_of_two, Float4, XformFull},
|
|
mis::power_heuristic,
|
|
ray::Ray,
|
|
scene::{Scene, SceneLightSample},
|
|
scramble::owen4,
|
|
space_fill::{hilbert, morton},
|
|
timer::Timer,
|
|
tracer::Tracer,
|
|
};
|
|
|
|
#[derive(Debug)]
|
|
pub struct Renderer<'a> {
|
|
pub output_file: String,
|
|
pub resolution: (usize, usize),
|
|
pub spp: usize,
|
|
pub seed: u32,
|
|
pub scene: Scene<'a>,
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub struct RenderStats {
|
|
pub accel_node_visits: u64,
|
|
pub ray_count: u64,
|
|
pub total_time: f64,
|
|
}
|
|
|
|
impl RenderStats {
|
|
fn new() -> RenderStats {
|
|
RenderStats {
|
|
accel_node_visits: 0,
|
|
ray_count: 0,
|
|
total_time: 0.0,
|
|
}
|
|
}
|
|
|
|
fn collect(&mut self, other: RenderStats) {
|
|
self.accel_node_visits += other.accel_node_visits;
|
|
self.ray_count += other.ray_count;
|
|
self.total_time += other.total_time;
|
|
}
|
|
}
|
|
|
|
impl<'a> Renderer<'a> {
|
|
pub fn render(
|
|
&self,
|
|
max_samples_per_bucket: u32,
|
|
crop: Option<(u32, u32, u32, u32)>,
|
|
thread_count: u32,
|
|
do_blender_output: bool,
|
|
) -> (Image, RenderStats) {
|
|
let mut tpool = Pool::new(thread_count);
|
|
|
|
let image = Image::new(self.resolution.0, self.resolution.1);
|
|
let (img_width, img_height) = (image.width(), image.height());
|
|
|
|
let all_jobs_queued = RwLock::new(false);
|
|
|
|
let collective_stats = RwLock::new(RenderStats::new());
|
|
|
|
// Set up job queue
|
|
let job_queue = MsQueue::new();
|
|
|
|
// For printing render progress
|
|
let pixels_rendered = Mutex::new(Cell::new(0));
|
|
|
|
// Calculate dimensions and coordinates of what we're rendering. This
|
|
// accounts for cropping.
|
|
let (width, height, start_x, start_y) = if let Some((x1, y1, x2, y2)) = crop {
|
|
let x1 = min(x1 as usize, img_width - 1);
|
|
let y1 = min(y1 as usize, img_height - 1);
|
|
let x2 = min(x2 as usize, img_width - 1);
|
|
let y2 = min(y2 as usize, img_height - 1);
|
|
(x2 - x1 + 1, y2 - y1 + 1, x1, y1)
|
|
} else {
|
|
(img_width, img_height, 0, 0)
|
|
};
|
|
|
|
// Render
|
|
tpool.scoped(|scope| {
|
|
// Spawn worker tasks
|
|
for _ in 0..thread_count {
|
|
let jq = &job_queue;
|
|
let ajq = &all_jobs_queued;
|
|
let img = ℑ
|
|
let pixrenref = &pixels_rendered;
|
|
let cstats = &collective_stats;
|
|
scope.execute(move || {
|
|
self.render_job(
|
|
jq,
|
|
ajq,
|
|
img,
|
|
width * height,
|
|
pixrenref,
|
|
cstats,
|
|
do_blender_output,
|
|
)
|
|
});
|
|
}
|
|
|
|
// Print initial 0.00% progress
|
|
print!("0.00%");
|
|
let _ = io::stdout().flush();
|
|
|
|
// Determine bucket size based on the per-thread maximum number of samples to
|
|
// calculate at a time.
|
|
let (bucket_w, bucket_h) = {
|
|
let target_pixels_per_bucket = max_samples_per_bucket as f64 / self.spp as f64;
|
|
let target_bucket_dim = if target_pixels_per_bucket.sqrt() < 1.0 {
|
|
1usize
|
|
} else {
|
|
target_pixels_per_bucket.sqrt() as usize
|
|
};
|
|
|
|
(target_bucket_dim, target_bucket_dim)
|
|
};
|
|
|
|
// Populate job queue
|
|
let bucket_n = {
|
|
let bucket_count_x = ((width / bucket_w) + 1) as u32;
|
|
let bucket_count_y = ((height / bucket_h) + 1) as u32;
|
|
let larger = cmp::max(bucket_count_x, bucket_count_y);
|
|
let pow2 = upper_power_of_two(larger);
|
|
pow2 * pow2
|
|
};
|
|
for hilbert_d in 0..bucket_n {
|
|
let (bx, by) = hilbert::decode(hilbert_d);
|
|
|
|
let x = bx as usize * bucket_w;
|
|
let y = by as usize * bucket_h;
|
|
let w = if width >= x {
|
|
min(bucket_w, width - x)
|
|
} else {
|
|
bucket_w
|
|
};
|
|
let h = if height >= y {
|
|
min(bucket_h, height - y)
|
|
} else {
|
|
bucket_h
|
|
};
|
|
if x < width && y < height && w > 0 && h > 0 {
|
|
job_queue.push(BucketJob {
|
|
x: (start_x + x) as u32,
|
|
y: (start_y + y) as u32,
|
|
w: w as u32,
|
|
h: h as u32,
|
|
});
|
|
}
|
|
}
|
|
|
|
// Mark done queuing jobs
|
|
*all_jobs_queued.write().unwrap() = true;
|
|
});
|
|
|
|
// Clear percentage progress print
|
|
print!("\r \r",);
|
|
|
|
// Return the rendered image and stats
|
|
return (image, *collective_stats.read().unwrap());
|
|
}
|
|
|
|
/// Waits for buckets in the job queue to render and renders them when available.
|
|
fn render_job(
|
|
&self,
|
|
job_queue: &MsQueue<BucketJob>,
|
|
all_jobs_queued: &RwLock<bool>,
|
|
image: &Image,
|
|
total_pixels: usize,
|
|
pixels_rendered: &Mutex<Cell<usize>>,
|
|
collected_stats: &RwLock<RenderStats>,
|
|
do_blender_output: bool,
|
|
) {
|
|
let mut stats = RenderStats::new();
|
|
let mut timer = Timer::new();
|
|
let mut total_timer = Timer::new();
|
|
|
|
let mut tracer = Tracer::from_assembly(&self.scene.root);
|
|
|
|
// Pre-calculate some useful values related to the image plane
|
|
let cmpx = 1.0 / self.resolution.0 as f32;
|
|
let cmpy = 1.0 / self.resolution.1 as f32;
|
|
let min_x = -1.0;
|
|
let max_x = 1.0;
|
|
let min_y = -(self.resolution.1 as f32 / self.resolution.0 as f32);
|
|
let max_y = self.resolution.1 as f32 / self.resolution.0 as f32;
|
|
let x_extent = max_x - min_x;
|
|
let y_extent = max_y - min_y;
|
|
|
|
// Render
|
|
'render_loop: loop {
|
|
// Get bucket, or exit if no more jobs left
|
|
let bucket: BucketJob;
|
|
loop {
|
|
if let Some(b) = job_queue.try_pop() {
|
|
bucket = b;
|
|
break;
|
|
} else if *all_jobs_queued.read().unwrap() {
|
|
break 'render_loop;
|
|
}
|
|
}
|
|
|
|
timer.tick();
|
|
|
|
let bucket_min = (bucket.x, bucket.y);
|
|
let bucket_max = (bucket.x + bucket.w, bucket.y + bucket.h);
|
|
let mut img_bucket = image.get_bucket(bucket_min, bucket_max);
|
|
|
|
// Trace each sample in each pixel.
|
|
for y in bucket_min.1..bucket_max.1 {
|
|
for x in bucket_min.0..bucket_max.0 {
|
|
// `si_offset` is for screen-space blue-noise sampling in the
|
|
// spirit of the paper "Screen-Space Blue-Noise Diffusion of Monte
|
|
// Carlo Sampling Error via Hierarchical Ordering of Pixels" by
|
|
// Ahmed et al.
|
|
//
|
|
// This works with any sobol or sobol-like sampler. But also happens
|
|
// to work well with golden-ratio sampling. Since we only use sobol
|
|
// and golden ratio sampling, we do this up-front here rather than in
|
|
// the samplers themselves.
|
|
let si_offset =
|
|
owen4(morton::encode(x, y), self.seed).wrapping_mul(self.spp as u32);
|
|
for si in 0..self.spp {
|
|
let si = (si as u32).wrapping_add(si_offset);
|
|
|
|
// Raw sample numbers.
|
|
let d0 = golden_ratio_sample(si);
|
|
let (d1, d2, d3, d4) = get_sample_4d(si, 0, self.seed);
|
|
let (d5, _, _, _) = get_sample_4d(si, 1, self.seed);
|
|
|
|
// Calculate the values we need to generate a camera ray.
|
|
let (img_x, img_y) = {
|
|
let filter_x = probit(d4, 2.0 / 6.0) + 0.5;
|
|
let filter_y = probit(d5, 2.0 / 6.0) + 0.5;
|
|
let samp_x = (filter_x + x as f32) * cmpx;
|
|
let samp_y = (filter_y + y as f32) * cmpy;
|
|
((samp_x - 0.5) * x_extent, (0.5 - samp_y) * y_extent)
|
|
};
|
|
let wavelength = map_0_1_to_wavelength(d0);
|
|
let time = d1;
|
|
let lens_uv = (d2, d3);
|
|
|
|
// Trace light path starting from a camera ray.
|
|
let ray = self
|
|
.scene
|
|
.camera
|
|
.generate_ray(img_x, img_y, time, wavelength, lens_uv.0, lens_uv.1);
|
|
let path_col =
|
|
trace_camera_light_path(&mut tracer, &self.scene, ray, si, self.seed);
|
|
|
|
// Accummulate light path color to pixel.
|
|
let mut col = img_bucket.get(x, y);
|
|
col += XYZ::from_spectral_sample(&path_col) / self.spp as f32;
|
|
img_bucket.set(x, y, col);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pre-calculate base64 encoding if needed
|
|
let base64_enc = if do_blender_output {
|
|
Some(img_bucket.rgba_base64(color::xyz_to_rec709_e))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// Print render progress, and image data if doing blender output
|
|
let guard = pixels_rendered.lock().unwrap();
|
|
let mut pr = (*guard).get();
|
|
let percentage_old = pr as f64 / total_pixels as f64 * 100.0;
|
|
|
|
pr += bucket.w as usize * bucket.h as usize;
|
|
(*guard).set(pr);
|
|
let percentage_new = pr as f64 / total_pixels as f64 * 100.0;
|
|
|
|
let old_string = format!("{:.2}%", percentage_old);
|
|
let new_string = format!("{:.2}%", percentage_new);
|
|
|
|
if let Some(bucket_data) = base64_enc {
|
|
// If doing Blender output
|
|
println!("DIV");
|
|
println!("{}", new_string);
|
|
println!(
|
|
"{} {} {} {}",
|
|
bucket_min.0, bucket_min.1, bucket_max.0, bucket_max.1
|
|
);
|
|
println!("{}", bucket_data);
|
|
println!("BUCKET_END");
|
|
println!("DIV");
|
|
} else {
|
|
// If doing console output
|
|
if new_string != old_string {
|
|
print!("\r{}", new_string);
|
|
}
|
|
}
|
|
let _ = io::stdout().flush();
|
|
}
|
|
|
|
stats.total_time += total_timer.tick() as f64;
|
|
stats.ray_count = tracer.rays_traced();
|
|
ACCEL_NODE_RAY_TESTS.with(|anv| {
|
|
stats.accel_node_visits += anv.get();
|
|
anv.set(0);
|
|
});
|
|
|
|
// Collect stats
|
|
collected_stats.write().unwrap().collect(stats);
|
|
}
|
|
}
|
|
|
|
fn trace_camera_light_path(
|
|
tracer: &mut Tracer,
|
|
scene: &Scene,
|
|
camera_ray: Ray,
|
|
sample_index: u32,
|
|
seed: u32,
|
|
) -> SpectralSample {
|
|
use crate::shading::surface_closure::SurfaceClosure;
|
|
use crate::surface::SurfaceIntersection;
|
|
|
|
const BOUNCE_COUNT: usize = 3;
|
|
|
|
let mut ray = camera_ray;
|
|
let mut ray_pdf = 1.0; // PDF from generating the ray.
|
|
let mut acc_color = Float4::splat(0.0); // Accumulated color.
|
|
let mut attenuation = Float4::splat(1.0); // Color attenuation along the path so far.
|
|
let mut sampling_seed = seed + 1;
|
|
|
|
for _ in 0..BOUNCE_COUNT {
|
|
let isect = tracer.trace(&mut ray);
|
|
if let SurfaceIntersection::Hit {
|
|
intersection_data: idata,
|
|
closure,
|
|
} = &isect
|
|
{
|
|
// Hit something! Do the stuff
|
|
|
|
// If it's an emission closure, handle specially:
|
|
// - Collect light from the emission.
|
|
// - Terminate the path.
|
|
if let SurfaceClosure::Emit(color) = *closure {
|
|
let mis_pdf = power_heuristic(ray_pdf, idata.sample_pdf);
|
|
acc_color += color.to_spectral_sample(ray.wavelength).e * attenuation / mis_pdf;
|
|
|
|
break;
|
|
}
|
|
|
|
// Roll the previous closure pdf into the attenauation
|
|
attenuation /= ray_pdf;
|
|
|
|
//-------------------------------------------------
|
|
// Sample light sources.
|
|
|
|
sampling_seed = sampling_seed.wrapping_add(1);
|
|
let (light_n, d2, d3, d4) = get_sample_4d(sample_index, 0, sampling_seed);
|
|
|
|
let light_uvw = (d2, d3, d4);
|
|
let light_info = scene.sample_lights(
|
|
light_n,
|
|
light_uvw,
|
|
ray.wavelength,
|
|
ray.time,
|
|
&XformFull::identity(),
|
|
&isect,
|
|
);
|
|
if !light_info.is_none() && light_info.pdf() > 0.0 && light_info.selection_pdf() > 0.0 {
|
|
let light_pdf = light_info.pdf();
|
|
let light_sel_pdf = light_info.selection_pdf();
|
|
|
|
// Calculate the shadow ray and surface closure stuff.
|
|
let (light_attenuation, closure_pdf, mut shadow_ray) = match light_info {
|
|
SceneLightSample::None => unreachable!(),
|
|
|
|
// Distant light
|
|
SceneLightSample::Distant { direction, .. } => {
|
|
let (light_attenuation, closure_pdf) = closure.evaluate(
|
|
ray.dir,
|
|
direction,
|
|
idata.nor,
|
|
idata.nor_g,
|
|
ray.wavelength,
|
|
);
|
|
let shadow_ray = {
|
|
// Calculate the shadow ray for testing if the light is
|
|
// in shadow or not.
|
|
let offset_pos = robust_ray_origin(
|
|
idata.pos,
|
|
idata.pos_err,
|
|
idata.nor_g.normalized(),
|
|
direction,
|
|
);
|
|
Ray::new(
|
|
offset_pos,
|
|
direction,
|
|
ray.time,
|
|
ray.wavelength,
|
|
std::f32::INFINITY,
|
|
true,
|
|
)
|
|
};
|
|
(light_attenuation, closure_pdf, shadow_ray)
|
|
}
|
|
|
|
// Surface light
|
|
SceneLightSample::Surface { sample_geo, .. } => {
|
|
let dir = sample_geo.0 - idata.pos;
|
|
let (light_attenuation, closure_pdf) =
|
|
closure.evaluate(ray.dir, dir, idata.nor, idata.nor_g, ray.wavelength);
|
|
let shadow_ray = {
|
|
// Calculate the shadow ray for testing if the light is
|
|
// in shadow or not.
|
|
let offset_pos = robust_ray_origin(
|
|
idata.pos,
|
|
idata.pos_err,
|
|
idata.nor_g.normalized(),
|
|
dir,
|
|
);
|
|
let offset_end = robust_ray_origin(
|
|
sample_geo.0,
|
|
sample_geo.2,
|
|
sample_geo.1.normalized(),
|
|
-dir,
|
|
);
|
|
Ray::new(
|
|
offset_pos,
|
|
offset_end - offset_pos,
|
|
ray.time,
|
|
ray.wavelength,
|
|
1.0,
|
|
true,
|
|
)
|
|
};
|
|
(light_attenuation, closure_pdf, shadow_ray)
|
|
}
|
|
};
|
|
|
|
// If there's any possible contribution, shoot a shadow
|
|
// ray to see if we can reach it.
|
|
if light_attenuation.e.max_element() > 0.0 {
|
|
if let SurfaceIntersection::Occlude = tracer.trace(&mut shadow_ray) {
|
|
// Calculate and store the light that will be contributed
|
|
// to the film plane if the light is not in shadow.
|
|
let light_mis_pdf = power_heuristic(light_pdf, closure_pdf);
|
|
acc_color += light_info.color().e * light_attenuation.e * attenuation
|
|
/ (light_mis_pdf * light_sel_pdf);
|
|
}
|
|
}
|
|
}
|
|
|
|
//-------------------------------------------------
|
|
// Prepare next bounce ray.
|
|
|
|
// Sample closure
|
|
let (dir, filter, pdf) = {
|
|
sampling_seed = sampling_seed.wrapping_add(1);
|
|
let (u, v, _, _) = get_sample_4d(sample_index, 0, sampling_seed);
|
|
|
|
closure.sample(
|
|
idata.incoming,
|
|
idata.nor,
|
|
idata.nor_g,
|
|
(u, v),
|
|
ray.wavelength,
|
|
)
|
|
};
|
|
|
|
// Check if pdf is zero, to avoid NaN's.
|
|
if (pdf > 0.0) && (filter.e.max_element() > 0.0) {
|
|
// Account for the additional light attenuation from
|
|
// this bounce
|
|
attenuation *= filter.e;
|
|
ray_pdf = pdf;
|
|
|
|
// Calculate the ray for this bounce
|
|
let offset_pos =
|
|
robust_ray_origin(idata.pos, idata.pos_err, idata.nor_g.normalized(), dir);
|
|
ray = Ray::new(
|
|
offset_pos,
|
|
dir,
|
|
ray.time,
|
|
ray.wavelength,
|
|
std::f32::INFINITY,
|
|
false,
|
|
);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SpectralSample::from_parts(acc_color, ray.wavelength)
|
|
}
|
|
|
|
// #[derive(Debug)]
|
|
// enum LightPathEvent {
|
|
// CameraRay,
|
|
// BounceRay,
|
|
// ShadowRay,
|
|
// }
|
|
|
|
// #[derive(Debug)]
|
|
// pub struct LightPath {
|
|
// event: LightPathEvent,
|
|
// bounce_count: u32,
|
|
|
|
// sampling_seed: u32,
|
|
// pixel_co: (u32, u32),
|
|
// sample_number: u32, // Which sample in the LDS sequence this is.
|
|
// dim_offset: u32,
|
|
// time: f32,
|
|
// wavelength: f32,
|
|
|
|
// next_bounce_ray: Option<Ray>,
|
|
// next_attenuation_fac: Float4,
|
|
|
|
// closure_sample_pdf: f32,
|
|
// light_attenuation: Float4,
|
|
// pending_color_addition: Float4,
|
|
// color: Float4,
|
|
// }
|
|
|
|
// #[allow(clippy::new_ret_no_self)]
|
|
// impl LightPath {
|
|
// fn new(
|
|
// scene: &Scene,
|
|
// sampling_seed: u32,
|
|
// pixel_co: (u32, u32),
|
|
// image_plane_co: (f32, f32),
|
|
// lens_uv: (f32, f32),
|
|
// time: f32,
|
|
// wavelength: f32,
|
|
// sample_number: u32,
|
|
// ) -> (LightPath, Ray) {
|
|
// (
|
|
// LightPath {
|
|
// event: LightPathEvent::CameraRay,
|
|
// bounce_count: 0,
|
|
|
|
// sampling_seed: sampling_seed ^ 0x40d4682b,
|
|
// pixel_co: pixel_co,
|
|
// sample_number: sample_number,
|
|
// dim_offset: 0,
|
|
// time: time,
|
|
// wavelength: wavelength,
|
|
|
|
// next_bounce_ray: None,
|
|
// next_attenuation_fac: Float4::splat(1.0),
|
|
|
|
// closure_sample_pdf: 1.0,
|
|
// light_attenuation: Float4::splat(1.0),
|
|
// pending_color_addition: Float4::splat(0.0),
|
|
// color: Float4::splat(0.0),
|
|
// },
|
|
// scene.camera.generate_ray(
|
|
// image_plane_co.0,
|
|
// image_plane_co.1,
|
|
// time,
|
|
// wavelength,
|
|
// lens_uv.0,
|
|
// lens_uv.1,
|
|
// ),
|
|
// )
|
|
// }
|
|
|
|
// fn next_lds_sequence(&mut self) {
|
|
// self.dim_offset = 0;
|
|
// self.sampling_seed += 1;
|
|
// }
|
|
|
|
// fn next_lds_samp(&mut self) -> (f32, f32, f32, f32) {
|
|
// let dimension = self.dim_offset;
|
|
// self.dim_offset += 1;
|
|
// get_sample_4d(self.sample_number, dimension, self.sampling_seed)
|
|
// }
|
|
|
|
// fn next(&mut self, scene: &Scene, isect: &surface::SurfaceIntersection, ray: &mut Ray) -> bool {
|
|
// match self.event {
|
|
// //--------------------------------------------------------------------
|
|
// // Result of Camera or bounce ray, prepare next bounce and light rays
|
|
// LightPathEvent::CameraRay | LightPathEvent::BounceRay => {
|
|
// if let surface::SurfaceIntersection::Hit {
|
|
// intersection_data: ref idata,
|
|
// ref closure,
|
|
// } = *isect
|
|
// {
|
|
// // Hit something! Do the stuff
|
|
|
|
// // If it's an emission closure, handle specially:
|
|
// // - Collect light from the emission.
|
|
// // - Terminate the path.
|
|
// use crate::shading::surface_closure::SurfaceClosure;
|
|
// if let SurfaceClosure::Emit(color) = *closure {
|
|
// let color = color.to_spectral_sample(self.wavelength).e;
|
|
// if let LightPathEvent::CameraRay = self.event {
|
|
// self.color += color;
|
|
// } else {
|
|
// let mis_pdf =
|
|
// power_heuristic(self.closure_sample_pdf, idata.sample_pdf);
|
|
// self.color += color * self.light_attenuation / mis_pdf;
|
|
// };
|
|
|
|
// return false;
|
|
// }
|
|
|
|
// // Roll the previous closure pdf into the attenauation
|
|
// self.light_attenuation /= self.closure_sample_pdf;
|
|
|
|
// // Prepare light ray
|
|
// self.next_lds_sequence();
|
|
// let (light_n, d2, d3, d4) = self.next_lds_samp();
|
|
// let light_uvw = (d2, d3, d4);
|
|
// let light_info = scene.sample_lights(
|
|
// light_n,
|
|
// light_uvw,
|
|
// self.wavelength,
|
|
// self.time,
|
|
// &XformFull::identity(),
|
|
// isect,
|
|
// );
|
|
// let found_light = if light_info.is_none()
|
|
// || light_info.pdf() <= 0.0
|
|
// || light_info.selection_pdf() <= 0.0
|
|
// {
|
|
// false
|
|
// } else {
|
|
// let light_pdf = light_info.pdf();
|
|
// let light_sel_pdf = light_info.selection_pdf();
|
|
|
|
// // Calculate the shadow ray and surface closure stuff
|
|
// let (attenuation, closure_pdf, shadow_ray) = match light_info {
|
|
// SceneLightSample::None => unreachable!(),
|
|
|
|
// // Distant light
|
|
// SceneLightSample::Distant { direction, .. } => {
|
|
// let (attenuation, closure_pdf) = closure.evaluate(
|
|
// ray.dir,
|
|
// direction,
|
|
// idata.nor,
|
|
// idata.nor_g,
|
|
// self.wavelength,
|
|
// );
|
|
// let shadow_ray = {
|
|
// // Calculate the shadow ray for testing if the light is
|
|
// // in shadow or not.
|
|
// let offset_pos = robust_ray_origin(
|
|
// idata.pos,
|
|
// idata.pos_err,
|
|
// idata.nor_g.normalized(),
|
|
// direction,
|
|
// );
|
|
// Ray::new(
|
|
// offset_pos,
|
|
// direction,
|
|
// self.time,
|
|
// self.wavelength,
|
|
// std::f32::INFINITY,
|
|
// true,
|
|
// )
|
|
// };
|
|
// (attenuation, closure_pdf, shadow_ray)
|
|
// }
|
|
|
|
// // Surface light
|
|
// SceneLightSample::Surface { sample_geo, .. } => {
|
|
// let dir = sample_geo.0 - idata.pos;
|
|
// let (attenuation, closure_pdf) = closure.evaluate(
|
|
// ray.dir,
|
|
// dir,
|
|
// idata.nor,
|
|
// idata.nor_g,
|
|
// self.wavelength,
|
|
// );
|
|
// let shadow_ray = {
|
|
// // Calculate the shadow ray for testing if the light is
|
|
// // in shadow or not.
|
|
// let offset_pos = robust_ray_origin(
|
|
// idata.pos,
|
|
// idata.pos_err,
|
|
// idata.nor_g.normalized(),
|
|
// dir,
|
|
// );
|
|
// let offset_end = robust_ray_origin(
|
|
// sample_geo.0,
|
|
// sample_geo.2,
|
|
// sample_geo.1.normalized(),
|
|
// -dir,
|
|
// );
|
|
// Ray::new(
|
|
// offset_pos,
|
|
// offset_end - offset_pos,
|
|
// self.time,
|
|
// self.wavelength,
|
|
// 1.0,
|
|
// true,
|
|
// )
|
|
// };
|
|
// (attenuation, closure_pdf, shadow_ray)
|
|
// }
|
|
// };
|
|
|
|
// // If there's any possible contribution, set up for a
|
|
// // light ray.
|
|
// if attenuation.e.max_element() <= 0.0 {
|
|
// false
|
|
// } else {
|
|
// // Calculate and store the light that will be contributed
|
|
// // to the film plane if the light is not in shadow.
|
|
// let light_mis_pdf = power_heuristic(light_pdf, closure_pdf);
|
|
// self.pending_color_addition =
|
|
// light_info.color().e * attenuation.e * self.light_attenuation
|
|
// / (light_mis_pdf * light_sel_pdf);
|
|
|
|
// *ray = shadow_ray;
|
|
|
|
// true
|
|
// }
|
|
// };
|
|
|
|
// // Prepare bounce ray
|
|
// let do_bounce = if self.bounce_count < 2 {
|
|
// self.bounce_count += 1;
|
|
|
|
// // Sample closure
|
|
// let (dir, filter, pdf) = {
|
|
// self.next_lds_sequence();
|
|
// let (u, v, _, _) = self.next_lds_samp();
|
|
// closure.sample(
|
|
// idata.incoming,
|
|
// idata.nor,
|
|
// idata.nor_g,
|
|
// (u, v),
|
|
// self.wavelength,
|
|
// )
|
|
// };
|
|
|
|
// // Check if pdf is zero, to avoid NaN's.
|
|
// if (pdf > 0.0) && (filter.e.max_element() > 0.0) {
|
|
// // Account for the additional light attenuation from
|
|
// // this bounce
|
|
// self.next_attenuation_fac = filter.e;
|
|
// self.closure_sample_pdf = pdf;
|
|
|
|
// // Calculate the ray for this bounce
|
|
// let offset_pos = robust_ray_origin(
|
|
// idata.pos,
|
|
// idata.pos_err,
|
|
// idata.nor_g.normalized(),
|
|
// dir,
|
|
// );
|
|
// self.next_bounce_ray = Some(Ray::new(
|
|
// offset_pos,
|
|
// dir,
|
|
// self.time,
|
|
// self.wavelength,
|
|
// std::f32::INFINITY,
|
|
// false,
|
|
// ));
|
|
|
|
// true
|
|
// } else {
|
|
// false
|
|
// }
|
|
// } else {
|
|
// self.next_bounce_ray = None;
|
|
// false
|
|
// };
|
|
|
|
// // Book keeping for next event
|
|
// if found_light {
|
|
// self.event = LightPathEvent::ShadowRay;
|
|
// return true;
|
|
// } else if do_bounce {
|
|
// *ray = self.next_bounce_ray.unwrap();
|
|
// self.event = LightPathEvent::BounceRay;
|
|
// self.light_attenuation *= self.next_attenuation_fac;
|
|
// return true;
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// } else {
|
|
// // Didn't hit anything, so background color
|
|
// self.color += scene
|
|
// .world
|
|
// .background_color
|
|
// .to_spectral_sample(self.wavelength)
|
|
// .e
|
|
// * self.light_attenuation
|
|
// / self.closure_sample_pdf;
|
|
// return false;
|
|
// }
|
|
// }
|
|
|
|
// //--------------------------------------------------------------------
|
|
// // Result of shadow ray from sampling a light
|
|
// LightPathEvent::ShadowRay => {
|
|
// // If the light was not in shadow, add it's light to the film
|
|
// // plane.
|
|
// if let surface::SurfaceIntersection::Miss = *isect {
|
|
// self.color += self.pending_color_addition;
|
|
// }
|
|
|
|
// // Set up for the next bounce, if any
|
|
// if let Some(ref nbr) = self.next_bounce_ray {
|
|
// *ray = *nbr;
|
|
// self.light_attenuation *= self.next_attenuation_fac;
|
|
// self.event = LightPathEvent::BounceRay;
|
|
// return true;
|
|
// } else {
|
|
// return false;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
/// Gets a sample, using LDS samples for lower dimensions,
|
|
/// and switching to random samples at higher dimensions where
|
|
/// LDS samples aren't available.
|
|
#[inline(always)]
|
|
fn get_sample_4d(i: u32, dimension_set: u32, seed: u32) -> (f32, f32, f32, f32) {
|
|
match dimension_set {
|
|
ds if ds < sobol_burley::NUM_DIMENSION_SETS_4D as u32 => {
|
|
// Sobol sampling.
|
|
//
|
|
let n4 = sobol_burley::sample_4d(i, ds, seed);
|
|
(n4[0], n4[1], n4[2], n4[3])
|
|
}
|
|
ds => {
|
|
// Random sampling.
|
|
use crate::hash::hash_u32_to_f32;
|
|
(
|
|
hash_u32_to_f32((ds * 4 + 0) ^ (i << 16), seed),
|
|
hash_u32_to_f32((ds * 4 + 1) ^ (i << 16), seed),
|
|
hash_u32_to_f32((ds * 4 + 2) ^ (i << 16), seed),
|
|
hash_u32_to_f32((ds * 4 + 3) ^ (i << 16), seed),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Golden ratio sampler.
|
|
///
|
|
// NOTE: use this for the wavelength dimension, because
|
|
// due to the nature of hero wavelength sampling this ends up
|
|
// being crazily more efficient than pretty much any other sampler,
|
|
// and reduces variance by a huge amount.
|
|
fn golden_ratio_sample(i: u32) -> f32 {
|
|
use sobol_burley::parts::u32_to_f32_norm;
|
|
u32_to_f32_norm(i.wrapping_mul(2654435769))
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct BucketJob {
|
|
x: u32,
|
|
y: u32,
|
|
w: u32,
|
|
h: u32,
|
|
}
|