psychopath/sub_crates/compact/src/fluv/fluv32.rs

359 lines
10 KiB
Rust

//! Encoding/decoding for the 32-bit FLuv32 color format.
//!
//! This encoding is based on, but is slightly different than, the 32-bit
//! LogLuv format from the paper "Overcoming Gamut and Dynamic Range
//! Limitations in Digital Images" by Greg Ward:
//!
//! * It uses the same uv chroma storage approach, but with *very* slightly
//! tweaked scales to allow perfect representation of E.
//! * It uses a floating point rather than log encoding to store luminance,
//! mainly for the sake of faster decoding.
//! * It omits the sign bit of LogLuv, foregoing negative luminance
//! capabilities.
//!
//! Aside from that, this format has the same chroma precision, very slightly
//! improved luminance precision, and the same 127-stops of dynamic range as
//! LogLuv.
//!
//! Like the LogLuv format, this is an absolute rather than relative color
//! encoding, and as such takes CIE XYZ triplets as input. It is *not*
//! designed to take arbitrary floating point triplets, and will perform poorly
//! if e.g. passed RGB values.
//!
//! The bit layout is (from most to least significant bit):
//!
//! * 7 bits: luminance exponent (bias 63)
//! * 9 bits: luminance mantissa (implied leading 1, for 10 bits precision)
//! * 8 bits: u'
//! * 8 bits: v'
//!
//! ## Luminance details
//!
//! Like typical floating point, the luminance mantissa is treated as having an
//! implicit leading 1, giving it an extra bit of precision.
//!
//! The luminance exponent is stored in 7 bits with a bias of 63. The smallest
//! exponent indicates a value of zero, and a valid encoding should also set
//! the mantissa to zero in that case (denormal numbers are not supported).
//! The largest exponent is given no special treatment (no infinities, no NaN).
//!
//! All together, this gives Fluv32 a worst-case precision that's slightly
//! better than Logluv, and a luminance range of roughly `10^-19` to `10^19`,
//! essentially the same as Logluv.
//!
//! Quoting Greg Ward about luminance ranges:
//!
//! > The sun is about `10^8 cd/m^2`, and the underside of a rock on a moonless
//! > night is probably around `10^-6` or so [...]
//!
//! So Fluv32's luminance range is *massively* larger than needed for any
//! day-to-day phenomena. The only things that exceed it are stellar events
//! such as supernovae, images of which are unliklely to be used with physical
//! units in most practical graphics applications.
#![allow(clippy::cast_lossless)]
const EXP_BIAS: i32 = 63;
const BIAS_OFFSET: u32 = 127 - EXP_BIAS as u32;
/// The scale factor of the quantized U component.
pub const U_SCALE: f32 = 817.0 / 2.0;
/// The scale factor of the quantized V component.
pub const V_SCALE: f32 = 1235.0 / 3.0;
/// Largest representable Y component.
pub const Y_MAX: f32 = ((1u128 << (128 - EXP_BIAS)) - (1u128 << (128 - EXP_BIAS - 10))) as f32;
/// Smallest representable non-zero Y component.
pub const Y_MIN: f32 = 1.0 / (1u128 << (EXP_BIAS - 1)) as f32;
/// Difference between 1.0 and the next largest representable Y value.
pub const Y_EPSILON: f32 = 1.0 / 512.0;
/// Encodes from CIE XYZ to 32-bit FloatLuv.
#[inline]
pub fn encode(xyz: (f32, f32, f32)) -> u32 {
debug_assert!(
xyz.0 >= 0.0
&& xyz.1 >= 0.0
&& xyz.2 >= 0.0
&& !xyz.0.is_nan()
&& !xyz.1.is_nan()
&& !xyz.2.is_nan(),
"trifloat::fluv32::encode(): encoding to fluv32 only \
works correctly for positive, non-NaN numbers, but the numbers passed \
were: ({}, {}, {})",
xyz.0,
xyz.1,
xyz.2
);
// Calculates the 16-bit encoding of the UV values for the given XYZ input.
#[inline(always)]
fn encode_uv(xyz: (f32, f32, f32)) -> u32 {
let s = xyz.0 + (15.0 * xyz.1) + (3.0 * xyz.2);
// The `+ 0.5` is for rounding, and is not part of the normal equation.
// The minimum value of 1.0 for v is to avoid a possible divide by zero
// when decoding. A value less than 1.0 is outside the real colors,
// so we don't need to store it anyway.
let u = (((4.0 * U_SCALE) * xyz.0 / s) + 0.5).max(0.0).min(255.0);
let v = (((9.0 * V_SCALE) * xyz.1 / s) + 0.5).max(1.0).min(255.0);
((u as u32) << 8) | (v as u32)
}
let y_bits = xyz.1.to_bits() & 0x7fffffff;
if y_bits < ((BIAS_OFFSET + 1) << 23) {
// Special case: black.
encode_uv((1.0, 1.0, 1.0))
} else if y_bits >= ((BIAS_OFFSET + 128) << 23) {
if xyz.1.is_infinite() {
// Special case: infinity. In this case, we don't have any
// reasonable basis for calculating chroma, so just return
// the brightest white.
0xffff0000 | encode_uv((1.0, 1.0, 1.0))
} else {
// Special case: non-infinite, but brighter luma than can be
// represented. Return the correct chroma, and the brightest luma.
0xffff0000 | encode_uv(xyz)
}
} else {
// Common case.
(((y_bits - (BIAS_OFFSET << 23)) << 2) & 0xffff0000) | encode_uv(xyz)
}
}
/// Decodes from 32-bit FloatLuv to CIE XYZ.
#[inline]
pub fn decode(fluv32: u32) -> (f32, f32, f32) {
// Unpack values.
let (y, u, v) = decode_yuv(fluv32);
let u = u as f32;
let v = v as f32;
// Calculate x and z.
// This is re-worked from the original equations, to allow a bunch of stuff
// to cancel out and avoid operations. It makes the underlying equations a
// bit non-obvious.
// We also roll the U/V_SCALE application into the final x and z formulas,
// since some of that cancels out as well, and all of it can be avoided at
// runtime that way.
const VU_RATIO: f32 = V_SCALE / U_SCALE;
let tmp = y / v;
let x = tmp * ((2.25 * VU_RATIO) * u); // y * (9u / 4v)
let z = tmp * ((3.0 * V_SCALE) - ((0.75 * VU_RATIO) * u) - (5.0 * v)); // y * ((12 - 3u - 20v) / 4v)
(x, y, z.max(0.0))
}
/// Decodes from 32-bit FloatLuv to Yuv.
///
/// The Y component is the luminance, and is simply the Y from CIE XYZ.
///
/// The u and v components are the CIE LUV u' and v' chromaticity coordinates,
/// but returned as `u8`s, and scaled by `U_SCALE` and `V_SCALE` respectively
/// to fit the range 0-255.
#[inline]
pub fn decode_yuv(fluv32: u32) -> (f32, u8, u8) {
let y = f32::from_bits(((fluv32 & 0xffff0000) >> 2) + (BIAS_OFFSET << 23));
let u = (fluv32 >> 8) as u8;
let v = fluv32 as u8;
if fluv32 <= 0xffff {
(0.0, u, v)
} else {
(y, u, v)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) {
decode(encode(floats))
}
#[test]
fn all_zeros() {
let fs = (0.0f32, 0.0f32, 0.0f32);
let tri = encode(fs);
let fs2 = decode(tri);
assert_eq!(0x000056c3, tri);
assert_eq!(fs, fs2);
}
#[test]
fn all_ones() {
let fs = (1.0f32, 1.0f32, 1.0f32);
let tri = encode(fs);
let fs2 = decode(tri);
assert!((fs.0 - fs2.0).abs() < 0.0000001);
assert_eq!(fs.1, fs2.1);
assert!((fs.2 - fs2.2).abs() < 0.0000001);
assert_eq!(0x7e0056c3, tri);
}
#[test]
fn powers_of_two() {
let mut n = 0.25;
for _ in 0..20 {
let a = (n as f32, n as f32, n as f32);
let b = round_trip(a);
let rd0 = 2.0 * (a.0 - b.0).abs() / (a.0 + b.0);
let rd2 = 2.0 * (a.2 - b.2).abs() / (a.2 + b.2);
assert_eq!(a.1, b.1);
assert!(rd0 < 0.01);
assert!(rd2 < 0.01);
n *= 2.0;
}
}
#[test]
fn accuracy_01() {
let mut n = 1.0;
for _ in 0..512 {
let a = (n as f32, n as f32, n as f32);
let b = round_trip(a);
let rd0 = 2.0 * (a.0 - b.0).abs() / (a.0 + b.0);
let rd2 = 2.0 * (a.2 - b.2).abs() / (a.2 + b.2);
assert_eq!(a.1, b.1);
assert!(rd0 < 0.01);
assert!(rd2 < 0.01);
n += 1.0 / 512.0;
}
}
#[test]
#[should_panic]
fn accuracy_02() {
let mut n = 1.0;
for _ in 0..1024 {
let a = (n as f32, n as f32, n as f32);
let b = round_trip(a);
assert_eq!(a.1, b.1);
n += 1.0 / 1024.0;
}
}
#[test]
fn integers() {
for n in 1..=512 {
let a = (n as f32, n as f32, n as f32);
let b = round_trip(a);
let rd0 = 2.0 * (a.0 - b.0).abs() / (a.0 + b.0);
let rd2 = 2.0 * (a.2 - b.2).abs() / (a.2 + b.2);
assert_eq!(a.1, b.1);
assert!(rd0 < 0.01);
assert!(rd2 < 0.01);
}
}
#[test]
fn precision_floor() {
let fs = (2049.0f32, 2049.0f32, 2049.0f32);
assert_eq!(2048.0, round_trip(fs).1);
}
#[test]
fn decode_yuv_01() {
let fs = (1.0, 1.0, 1.0);
let a = encode(fs);
assert_eq!((1.0, 0x56, 0xc3), decode_yuv(a));
}
#[test]
fn saturate_y() {
let fs = (1.0e+28, 1.0e+28, 1.0e+28);
assert_eq!(Y_MAX, round_trip(fs).1);
assert_eq!(Y_MAX, decode(0xFFFFFFFF).1);
}
#[test]
fn inf_saturate() {
use std::f32::INFINITY;
let fs = (INFINITY, INFINITY, INFINITY);
assert_eq!(Y_MAX, round_trip(fs).1);
assert_eq!(0xffff56c3, encode(fs));
}
#[test]
fn smallest_value_and_underflow() {
let fs1 = (Y_MIN, Y_MIN, Y_MIN);
let fs2 = (Y_MIN * 0.99, Y_MIN * 0.99, Y_MIN * 0.99);
dbg!(Y_MIN);
assert_eq!(fs1.1, round_trip(fs1).1);
assert_eq!(0.0, round_trip(fs2).1);
assert_eq!(0x000056c3, encode(fs2));
}
#[test]
fn negative_z_impossible() {
for y in 0..1024 {
let fs = (1.0, 1.0 + (y as f32 / 4096.0), 0.0);
let fs2 = round_trip(fs);
assert!(fs2.2 >= 0.0);
}
}
#[test]
#[should_panic]
fn nans_01() {
encode((std::f32::NAN, 0.0, 0.0));
}
#[test]
#[should_panic]
fn nans_02() {
encode((0.0, std::f32::NAN, 0.0));
}
#[test]
#[should_panic]
fn nans_03() {
encode((0.0, 0.0, std::f32::NAN));
}
#[test]
#[should_panic]
fn negative_01() {
encode((-1.0, 0.0, 0.0));
}
#[test]
#[should_panic]
fn negative_02() {
encode((0.0, -1.0, 0.0));
}
#[test]
#[should_panic]
fn negative_03() {
encode((0.0, 0.0, -1.0));
}
#[test]
fn negative_04() {
encode((-0.0, -0.0, -0.0));
}
}