psychopath/sub_crates/rmath/examples/precision.rs

269 lines
7.8 KiB
Rust

use rand::{rngs::SmallRng, FromEntropy, Rng};
use rmath::{utils::ulp_diff, wide4::Float4};
type D4 = [f64; 4];
fn main() {
let mut rng = SmallRng::from_entropy();
// Convenience functions for generating random Float4's.
let mut rf4 = || {
let mut rf = || {
let range = 268435456.0;
let n = rng.gen::<f64>();
((n * range * 2.0) - range) as f32
};
Float4::new(rf(), rf(), rf(), rf())
};
// Dot product test.
println!("Dot product:");
{
let mut max_ulp_diff = 0u32;
for _ in 0..10000000 {
let v1 = rf4();
let v2 = rf4();
let dpa = Float4::dot_3(v1, v2);
let dpb = dot_3(f4_to_d4(v1), f4_to_d4(v2));
let ud = ulp_diff(dpa, dpb as f32);
max_ulp_diff = max_ulp_diff.max(ud);
}
println!(" Max error (ulps):\n {:?}\n", max_ulp_diff);
}
// Cross product test.
println!("Cross product:");
{
let mut max_ulp_diff = [0u32; 4];
for _ in 0..10000000 {
let v1 = rf4();
let v2 = rf4();
let v3a = Float4::cross_3(v1, v2);
let v3b = cross_3(f4_to_d4(v1), f4_to_d4(v2));
let ud = ulp_diff_f4d4(v3a, v3b);
for i in 0..4 {
max_ulp_diff[i] = max_ulp_diff[i].max(ud[i]);
}
}
println!(" Max error (ulps):\n {:?}\n", max_ulp_diff);
}
// Matrix inversion test.
println!("Matrix inversion:");
{
let mut max_ulp_diff = [[0u32; 4]; 3];
let mut det_ulp_hist = [0u32; 9];
for _ in 0..2000000 {
let m = [rf4(), rf4(), rf4()];
let ima = Float4::invert_3x3_w_det(&m);
let imb = invert_3x3([f4_to_d4(m[0]), f4_to_d4(m[1]), f4_to_d4(m[2])]);
if let (Some((ima, deta)), Some((imb, detb))) = (ima, imb) {
let det_ulp_diff = ulp_diff(deta, detb as f32);
let mut hist_upper = 0;
for i in 0..det_ulp_hist.len() {
if det_ulp_diff <= hist_upper {
det_ulp_hist[i] += 1;
break;
}
if hist_upper == 0 {
hist_upper += 1;
} else {
hist_upper *= 10;
}
}
if det_ulp_diff == 0 {
for i in 0..3 {
let ud = ulp_diff_f4d4(ima[i], imb[i]);
for j in 0..4 {
max_ulp_diff[i][j] = max_ulp_diff[i][j].max(ud[j]);
}
}
}
}
}
println!(
" Max error when determinant has 0-ulp error (ulps):\n {:?}",
max_ulp_diff
);
let total: u32 = det_ulp_hist.iter().sum();
let mut ulp = 0;
let mut sum = 0;
println!(" Determinant error distribution:");
for h in det_ulp_hist.iter() {
sum += *h;
println!(
" {:.8}% <= {} ulps",
sum as f64 / total as f64 * 100.0,
ulp
);
if ulp == 0 {
ulp += 1;
} else {
ulp *= 10;
}
}
println!();
}
}
//-------------------------------------------------------------
fn f4_to_d4(v: Float4) -> D4 {
[v.a() as f64, v.b() as f64, v.c() as f64, v.d() as f64]
}
fn ulp_diff_f4d4(a: Float4, b: D4) -> [u32; 4] {
[
ulp_diff(a.a(), b[0] as f32),
ulp_diff(a.b(), b[1] as f32),
ulp_diff(a.c(), b[2] as f32),
ulp_diff(a.d(), b[3] as f32),
]
}
//-------------------------------------------------------------
fn dot_3(a: D4, b: D4) -> f64 {
// Products.
let (x, x_err) = two_prod(a[0], b[0]);
let (y, y_err) = two_prod(a[1], b[1]);
let (z, z_err) = two_prod(a[2], b[2]);
// Sums.
let (s1, s1_err) = two_sum(x, y);
let err1 = x_err + (y_err + s1_err);
let (s2, s2_err) = two_sum(s1, z);
let err2 = z_err + (err1 + s2_err);
// Final result with rounding error compensation.
s2 + err2
}
fn cross_3(a: D4, b: D4) -> D4 {
[
difference_of_products(a[1], b[2], a[2], b[1]),
difference_of_products(a[2], b[0], a[0], b[2]),
difference_of_products(a[0], b[1], a[1], b[0]),
difference_of_products(a[3], b[3], a[3], b[3]),
]
}
fn invert_3x3(m: [D4; 3]) -> Option<([D4; 3], f64)> {
let m0_bca = [m[0][1], m[0][2], m[0][0], m[0][3]];
let m1_bca = [m[1][1], m[1][2], m[1][0], m[1][3]];
let m2_bca = [m[2][1], m[2][2], m[2][0], m[2][3]];
let m0_cab = [m[0][2], m[0][0], m[0][1], m[0][3]];
let m1_cab = [m[1][2], m[1][0], m[1][1], m[1][3]];
let m2_cab = [m[2][2], m[2][0], m[2][1], m[2][3]];
let abc = [
difference_of_products(m1_bca[0], m2_cab[0], m1_cab[0], m2_bca[0]),
difference_of_products(m1_bca[1], m2_cab[1], m1_cab[1], m2_bca[1]),
difference_of_products(m1_bca[2], m2_cab[2], m1_cab[2], m2_bca[2]),
difference_of_products(m1_bca[3], m2_cab[3], m1_cab[3], m2_bca[3]),
];
let def = [
difference_of_products(m2_bca[0], m0_cab[0], m2_cab[0], m0_bca[0]),
difference_of_products(m2_bca[1], m0_cab[1], m2_cab[1], m0_bca[1]),
difference_of_products(m2_bca[2], m0_cab[2], m2_cab[2], m0_bca[2]),
difference_of_products(m2_bca[3], m0_cab[3], m2_cab[3], m0_bca[3]),
];
let ghi = [
difference_of_products(m0_bca[0], m1_cab[0], m0_cab[0], m1_bca[0]),
difference_of_products(m0_bca[1], m1_cab[1], m0_cab[1], m1_bca[1]),
difference_of_products(m0_bca[2], m1_cab[2], m0_cab[2], m1_bca[2]),
difference_of_products(m0_bca[3], m1_cab[3], m0_cab[3], m1_bca[3]),
];
let det = dot_3(
[abc[0], def[0], ghi[0], 0.0],
[m[0][0], m[1][0], m[2][0], 0.0],
);
if det == 0.0 {
None
} else {
Some((
[
[abc[0] / det, def[0] / det, ghi[0] / det, 0.0],
[abc[1] / det, def[1] / det, ghi[1] / det, 0.0],
[abc[2] / det, def[2] / det, ghi[2] / det, 0.0],
],
// [
// [abc[0], def[0], ghi[0], 0.0],
// [abc[1], def[1], ghi[1], 0.0],
// [abc[2], def[2], ghi[2], 0.0],
// ],
det,
))
}
}
fn rel_diff(a: f64, b: f64) -> f64 {
(a - b).abs() / a.abs().max(b.abs())
}
//-------------------------------------------------------------
/// `(a * b) - (c * d)` but done with high precision via floating point tricks.
///
/// See https://pharr.org/matt/blog/2019/11/03/difference-of-floats
#[inline(always)]
fn difference_of_products(a: f64, b: f64, c: f64, d: f64) -> f64 {
let cd = c * d;
let dop = a.mul_add(b, -cd);
let err = (-c).mul_add(d, cd);
dop + err
}
/// `(a * b) + (c * d)` but done with high precision via floating point tricks.
#[inline(always)]
fn sum_of_products(a: f64, b: f64, c: f64, d: f64) -> f64 {
let cd = c * d;
let sop = a.mul_add(b, cd);
let err = c.mul_add(d, -cd);
sop + err
}
/// `a * b` but also returns a rounding error for precise composition
/// with other operations.
#[inline(always)]
fn two_prod(a: f64, b: f64) -> (f64, f64)
// (product, rounding_err)
{
let ab = a * b;
(ab, a.mul_add(b, -ab))
}
/// `a + b` but also returns a rounding error for precise composition
/// with other operations.
#[inline(always)]
fn two_sum(a: f64, b: f64) -> (f64, f64)
// (sum, rounding_err)
{
let sum = a + b;
let delta = sum - a;
(sum, (a - (sum - delta)) + (b - delta))
}
#[inline(always)]
fn two_diff(a: f64, b: f64) -> (f64, f64)
// (diff, rounding_err)
{
let diff = a - b;
let delta = diff - a;
(diff, (a - (diff - delta)) - (b + delta))
}