Includes: - More scene parsing code. Making good progress! - Making the rendering code actually use the Scene and Assembly types. - Bare beginnings of a Tracer type.
220 lines
7.3 KiB
Rust
220 lines
7.3 KiB
Rust
#![allow(dead_code)]
|
|
|
|
use lerp::lerp_slice;
|
|
use bbox::BBox;
|
|
use ray::Ray;
|
|
use algorithm::partition;
|
|
|
|
#[derive(Debug)]
|
|
pub struct BVH {
|
|
nodes: Vec<BVHNode>,
|
|
bounds: Vec<BBox>,
|
|
depth: usize,
|
|
bounds_cache: Vec<BBox>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum BVHNode {
|
|
Internal {
|
|
bounds_range: (usize, usize),
|
|
second_child_index: usize,
|
|
split_axis: u8,
|
|
},
|
|
|
|
Leaf {
|
|
bounds_range: (usize, usize),
|
|
object_range: (usize, usize),
|
|
},
|
|
}
|
|
|
|
impl BVH {
|
|
pub fn new_empty() -> BVH {
|
|
BVH {
|
|
nodes: Vec::new(),
|
|
bounds: Vec::new(),
|
|
depth: 0,
|
|
bounds_cache: Vec::new(),
|
|
}
|
|
}
|
|
|
|
pub fn from_objects<'a, T, F>(objects: &mut [T], objects_per_leaf: usize, bounder: F) -> BVH
|
|
where F: 'a + Fn(&T) -> &'a [BBox]
|
|
{
|
|
let mut bvh = BVH::new_empty();
|
|
|
|
bvh.recursive_build(0, 0, objects_per_leaf, objects, &bounder);
|
|
bvh.bounds_cache.clear();
|
|
bvh.bounds_cache.shrink_to_fit();
|
|
|
|
println!("BVH Depth: {}", bvh.depth);
|
|
|
|
bvh
|
|
}
|
|
|
|
fn acc_bounds<'a, T, F>(&mut self, objects1: &mut [T], bounder: &F)
|
|
where F: 'a + Fn(&T) -> &'a [BBox]
|
|
{
|
|
// TODO: merging of different length bounds
|
|
self.bounds_cache.clear();
|
|
for bb in bounder(&objects1[0]).iter() {
|
|
self.bounds_cache.push(*bb);
|
|
}
|
|
for obj in &objects1[1..] {
|
|
let bounds = bounder(obj);
|
|
debug_assert!(self.bounds_cache.len() == bounds.len());
|
|
for i in 0..bounds.len() {
|
|
self.bounds_cache[i] = self.bounds_cache[i] | bounds[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
fn recursive_build<'a, T, F>(&mut self,
|
|
offset: usize,
|
|
depth: usize,
|
|
objects_per_leaf: usize,
|
|
objects: &mut [T],
|
|
bounder: &F)
|
|
-> (usize, (usize, usize))
|
|
where F: 'a + Fn(&T) -> &'a [BBox]
|
|
{
|
|
let me = self.nodes.len();
|
|
|
|
if objects.len() == 0 {
|
|
return (0, (0, 0));
|
|
} else if objects.len() <= objects_per_leaf {
|
|
// Leaf node
|
|
self.acc_bounds(objects, bounder);
|
|
let bi = self.bounds.len();
|
|
for b in self.bounds_cache.iter() {
|
|
self.bounds.push(*b);
|
|
}
|
|
self.nodes.push(BVHNode::Leaf {
|
|
bounds_range: (bi, self.bounds.len()),
|
|
object_range: (offset, offset + objects.len()),
|
|
});
|
|
|
|
if self.depth < depth {
|
|
self.depth = depth;
|
|
}
|
|
|
|
return (me, (bi, self.bounds.len()));
|
|
} else {
|
|
// Not a leaf node
|
|
self.nodes.push(BVHNode::Internal {
|
|
bounds_range: (0, 0),
|
|
second_child_index: 0,
|
|
split_axis: 0,
|
|
});
|
|
|
|
// Determine which axis to split on
|
|
let bounds = {
|
|
let mut bb = BBox::new();
|
|
for obj in &objects[..] {
|
|
bb = bb | lerp_slice(bounder(obj), 0.5);
|
|
}
|
|
bb
|
|
};
|
|
let split_axis = {
|
|
let x_ext = bounds.max[0] - bounds.min[0];
|
|
let y_ext = bounds.max[1] - bounds.min[1];
|
|
let z_ext = bounds.max[2] - bounds.min[2];
|
|
if x_ext > y_ext && x_ext > z_ext {
|
|
0
|
|
} else if y_ext > z_ext {
|
|
1
|
|
} else {
|
|
2
|
|
}
|
|
};
|
|
let split_pos = (bounds.min[split_axis] + bounds.max[split_axis]) * 0.5;
|
|
|
|
// Partition objects based on split
|
|
let split_index = {
|
|
let mut split_i = partition(&mut objects[..], |obj| {
|
|
let tb = lerp_slice(bounder(obj), 0.5);
|
|
let centroid = (tb.min[split_axis] + tb.max[split_axis]) * 0.5;
|
|
centroid < split_pos
|
|
});
|
|
if split_i < 1 {
|
|
split_i = 1;
|
|
}
|
|
|
|
split_i
|
|
};
|
|
|
|
// Create child nodes
|
|
let (_, c1_bounds) = self.recursive_build(offset,
|
|
depth + 1,
|
|
objects_per_leaf,
|
|
&mut objects[..split_index],
|
|
bounder);
|
|
let (c2_index, c2_bounds) = self.recursive_build(offset + split_index,
|
|
depth + 1,
|
|
objects_per_leaf,
|
|
&mut objects[split_index..],
|
|
bounder);
|
|
|
|
// Determine bounds
|
|
// TODO: merging of different length bounds
|
|
let bi = self.bounds.len();
|
|
for (i1, i2) in Iterator::zip(c1_bounds.0..c1_bounds.1, c2_bounds.0..c2_bounds.1) {
|
|
let bb = self.bounds[i1] | self.bounds[i2];
|
|
self.bounds.push(bb);
|
|
}
|
|
|
|
// Set node
|
|
self.nodes[me] = BVHNode::Internal {
|
|
bounds_range: (bi, self.bounds.len()),
|
|
second_child_index: c2_index,
|
|
split_axis: split_axis as u8,
|
|
};
|
|
|
|
return (me, (bi, self.bounds.len()));
|
|
}
|
|
}
|
|
|
|
|
|
pub fn traverse<T, F>(&self, rays: &mut [Ray], objects: &[T], mut obj_ray_test: F)
|
|
where F: FnMut(&T, &mut [Ray])
|
|
{
|
|
let mut i_stack = [0; 65];
|
|
let mut ray_i_stack = [rays.len(); 65];
|
|
let mut stack_ptr = 1;
|
|
|
|
while stack_ptr > 0 {
|
|
match self.nodes[i_stack[stack_ptr]] {
|
|
BVHNode::Internal { bounds_range: br, second_child_index, split_axis } => {
|
|
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
|
|
lerp_slice(&self.bounds[br.0..br.1], r.time).intersect_ray(r)
|
|
});
|
|
if part > 0 {
|
|
i_stack[stack_ptr] += 1;
|
|
i_stack[stack_ptr + 1] = second_child_index;
|
|
ray_i_stack[stack_ptr] = part;
|
|
ray_i_stack[stack_ptr + 1] = part;
|
|
if rays[0].dir[split_axis as usize].is_sign_positive() {
|
|
i_stack.swap(stack_ptr, stack_ptr + 1);
|
|
}
|
|
stack_ptr += 1;
|
|
} else {
|
|
stack_ptr -= 1;
|
|
}
|
|
}
|
|
|
|
BVHNode::Leaf { bounds_range: br, object_range } => {
|
|
let part = partition(&mut rays[..ray_i_stack[stack_ptr]], |r| {
|
|
lerp_slice(&self.bounds[br.0..br.1], r.time).intersect_ray(r)
|
|
});
|
|
if part > 0 {
|
|
for obj in &objects[object_range.0..object_range.1] {
|
|
obj_ray_test(obj, &mut rays[..part]);
|
|
}
|
|
}
|
|
|
|
stack_ptr -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|