300 lines
9.5 KiB
Rust
300 lines
9.5 KiB
Rust
//! Encoding/decoding for signed 48-bit trifloat numbers.
|
|
//!
|
|
//! The encoding uses 13 bits of mantissa and 1 sign bit per number, and 6
|
|
//! bits for the shared exponent. The bit layout is: [sign 1, mantissa 1,
|
|
//! sign 2, mantissa 2, sign 3, mantissa 3, exponent]. The exponent is stored
|
|
//! as an unsigned integer with a bias of 25.
|
|
//!
|
|
//! The largest representable number is `2^38 - 2^25`, and the smallest
|
|
//! representable positive number is `2^-38`.
|
|
//!
|
|
//! Since the exponent is shared between all three values, the precision
|
|
//! of all three values depends on the largest (in magnitude) of the three.
|
|
//! All integers in the range `[-8192, 8192]` can be represented exactly in the
|
|
//! largest value.
|
|
|
|
use crate::{fiddle_exp2, fiddle_log2};
|
|
|
|
/// Largest representable number.
|
|
pub const MAX: f32 = 274_844_352_512.0;
|
|
|
|
/// Smallest representable number.
|
|
///
|
|
/// Note this is not the smallest _magnitude_ number. This is a negative
|
|
/// number of large magnitude.
|
|
pub const MIN: f32 = -274_844_352_512.0;
|
|
|
|
/// Smallest representable positive number.
|
|
///
|
|
/// This is the number with the smallest possible magnitude (aside from zero).
|
|
pub const MIN_POSITIVE: f32 = 0.000_000_000_003_637_978_807_091_713;
|
|
|
|
/// Difference between 1.0 and the next largest representable number.
|
|
pub const EPSILON: f32 = 1.0 / 4096.0;
|
|
|
|
const EXP_BIAS: i32 = 25;
|
|
const MIN_EXP: i32 = 0 - EXP_BIAS;
|
|
const MAX_EXP: i32 = 63 - EXP_BIAS;
|
|
|
|
/// Encodes three floating point values into a signed 48-bit trifloat.
|
|
///
|
|
/// Input floats that are larger than `MAX` or smaller than `MIN` will saturate
|
|
/// to `MAX` and `MIN` respectively, including +/- infinity. Values are
|
|
/// converted to trifloat precision by rounding.
|
|
///
|
|
/// Only the lower 48 bits of the return value are used. The highest 16 bits
|
|
/// will all be zero and can be safely discarded.
|
|
///
|
|
/// Warning: NaN's are _not_ supported by the trifloat format. There are
|
|
/// debug-only assertions in place to catch such values in the input floats.
|
|
#[inline]
|
|
pub fn encode(floats: (f32, f32, f32)) -> u64 {
|
|
debug_assert!(
|
|
!floats.0.is_nan() && !floats.1.is_nan() && !floats.2.is_nan(),
|
|
"trifloat::signed48::encode(): encoding to signed tri-floats only \
|
|
works correctly for non-NaN numbers, but the numbers passed were: \
|
|
({}, {}, {})",
|
|
floats.0,
|
|
floats.1,
|
|
floats.2
|
|
);
|
|
|
|
// Find the largest (in magnitude) of the three values.
|
|
let largest_value = {
|
|
let mut largest_value: f32 = 0.0;
|
|
if floats.0.abs() > largest_value.abs() {
|
|
largest_value = floats.0;
|
|
}
|
|
if floats.1.abs() > largest_value.abs() {
|
|
largest_value = floats.1;
|
|
}
|
|
if floats.2.abs() > largest_value.abs() {
|
|
largest_value = floats.2;
|
|
}
|
|
largest_value
|
|
};
|
|
|
|
// Calculate the exponent and 1.0/multiplier for encoding the values.
|
|
let (exponent, inv_multiplier) = {
|
|
let mut exponent = (fiddle_log2(largest_value) + 1).max(MIN_EXP).min(MAX_EXP);
|
|
let mut inv_multiplier = fiddle_exp2(-exponent + 13);
|
|
|
|
// Edge-case: make sure rounding pushes the largest value up
|
|
// appropriately if needed.
|
|
if (largest_value * inv_multiplier).abs() + 0.5 >= 8192.0 {
|
|
exponent = (exponent + 1).min(MAX_EXP);
|
|
inv_multiplier = fiddle_exp2(-exponent + 13);
|
|
}
|
|
(exponent, inv_multiplier)
|
|
};
|
|
|
|
// Quantize and encode values.
|
|
let x = (floats.0.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111;
|
|
let x_sign = (floats.0.to_bits() >> 31) as u64;
|
|
let y = (floats.1.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111;
|
|
let y_sign = (floats.1.to_bits() >> 31) as u64;
|
|
let z = (floats.2.abs() * inv_multiplier + 0.5).min(8191.0) as u64 & 0b111_11111_11111;
|
|
let z_sign = (floats.2.to_bits() >> 31) as u64;
|
|
let e = (exponent + EXP_BIAS) as u64 & 0b111_111;
|
|
|
|
// Pack values into a single u64 and return.
|
|
(x_sign << 47) | (x << 34) | (y_sign << 33) | (y << 20) | (z_sign << 19) | (z << 6) | e
|
|
}
|
|
|
|
/// Decodes a signed 48-bit trifloat into three full floating point numbers.
|
|
///
|
|
/// This operation is lossless and cannot fail. Only the lower 48 bits of the
|
|
/// input value are used--the upper 16 bits can safely be anything and are
|
|
/// ignored.
|
|
#[inline]
|
|
pub fn decode(trifloat: u64) -> (f32, f32, f32) {
|
|
// Unpack values.
|
|
let x = (trifloat >> 34) & 0b111_11111_11111;
|
|
let y = (trifloat >> 20) & 0b111_11111_11111;
|
|
let z = (trifloat >> 6) & 0b111_11111_11111;
|
|
|
|
let x_sign = ((trifloat >> 16) & 0x8000_0000) as u32;
|
|
let y_sign = ((trifloat >> 2) & 0x8000_0000) as u32;
|
|
let z_sign = ((trifloat << 12) & 0x8000_0000) as u32;
|
|
|
|
let e = trifloat & 0b111_111;
|
|
|
|
let multiplier = fiddle_exp2(e as i32 - EXP_BIAS - 13);
|
|
|
|
(
|
|
f32::from_bits((x as f32 * multiplier).to_bits() | x_sign),
|
|
f32::from_bits((y as f32 * multiplier).to_bits() | y_sign),
|
|
f32::from_bits((z as f32 * multiplier).to_bits() | z_sign),
|
|
)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
fn round_trip(floats: (f32, f32, f32)) -> (f32, f32, f32) {
|
|
decode(encode(floats))
|
|
}
|
|
|
|
#[test]
|
|
fn all_zeros() {
|
|
let fs = (0.0f32, 0.0f32, 0.0f32);
|
|
|
|
let tri = encode(fs);
|
|
let fs2 = decode(tri);
|
|
|
|
assert_eq!(tri, 0);
|
|
assert_eq!(fs, fs2);
|
|
}
|
|
|
|
#[test]
|
|
fn powers_of_two() {
|
|
let fs = (8.0f32, 128.0f32, 0.5f32);
|
|
assert_eq!(round_trip(fs), fs);
|
|
}
|
|
|
|
#[test]
|
|
fn signs() {
|
|
let fs1 = (1.0f32, 1.0f32, 1.0f32);
|
|
let fs2 = (1.0f32, 1.0f32, -1.0f32);
|
|
let fs3 = (1.0f32, -1.0f32, 1.0f32);
|
|
let fs4 = (1.0f32, -1.0f32, -1.0f32);
|
|
let fs5 = (-1.0f32, 1.0f32, 1.0f32);
|
|
let fs6 = (-1.0f32, 1.0f32, -1.0f32);
|
|
let fs7 = (-1.0f32, -1.0f32, 1.0f32);
|
|
let fs8 = (-1.0f32, -1.0f32, -1.0f32);
|
|
|
|
assert_eq!(fs1, round_trip(fs1));
|
|
assert_eq!(fs2, round_trip(fs2));
|
|
assert_eq!(fs3, round_trip(fs3));
|
|
assert_eq!(fs4, round_trip(fs4));
|
|
assert_eq!(fs5, round_trip(fs5));
|
|
assert_eq!(fs6, round_trip(fs6));
|
|
assert_eq!(fs7, round_trip(fs7));
|
|
assert_eq!(fs8, round_trip(fs8));
|
|
}
|
|
|
|
#[test]
|
|
fn accuracy() {
|
|
let mut n = 1.0;
|
|
for _ in 0..256 {
|
|
let (x, _, _) = round_trip((n, 0.0, 0.0));
|
|
assert_eq!(n, x);
|
|
n += 1.0 / 256.0;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn integers() {
|
|
for n in -8192i32..=8192i32 {
|
|
let (x, _, _) = round_trip((n as f32, 0.0, 0.0));
|
|
assert_eq!(n as f32, x);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn rounding() {
|
|
let fs = (7.0f32, 8193.0f32, -1.0f32);
|
|
let fsn = (-7.0f32, -8193.0f32, 1.0f32);
|
|
assert_eq!(round_trip(fs), (8.0, 8194.0, -2.0));
|
|
assert_eq!(round_trip(fsn), (-8.0, -8194.0, 2.0));
|
|
}
|
|
|
|
#[test]
|
|
fn rounding_edge_case() {
|
|
let fs = (16383.0f32, 0.0f32, 0.0f32);
|
|
|
|
assert_eq!(round_trip(fs), (16384.0, 0.0, 0.0),);
|
|
}
|
|
|
|
#[test]
|
|
fn saturate() {
|
|
let fs = (
|
|
99_999_999_999_999.0,
|
|
99_999_999_999_999.0,
|
|
99_999_999_999_999.0,
|
|
);
|
|
let fsn = (
|
|
-99_999_999_999_999.0,
|
|
-99_999_999_999_999.0,
|
|
-99_999_999_999_999.0,
|
|
);
|
|
|
|
assert_eq!(round_trip(fs), (MAX, MAX, MAX));
|
|
assert_eq!(round_trip(fsn), (MIN, MIN, MIN));
|
|
assert_eq!(decode(0x7FFD_FFF7_FFFF), (MAX, MAX, MAX));
|
|
assert_eq!(decode(0xFFFF_FFFF_FFFF), (MIN, MIN, MIN));
|
|
}
|
|
|
|
#[test]
|
|
fn inf_saturate() {
|
|
use std::f32::INFINITY;
|
|
let fs = (INFINITY, 0.0, 0.0);
|
|
let fsn = (-INFINITY, 0.0, 0.0);
|
|
|
|
assert_eq!(round_trip(fs), (MAX, 0.0, 0.0));
|
|
assert_eq!(round_trip(fsn), (MIN, 0.0, 0.0));
|
|
assert_eq!(encode(fs), 0x7FFC0000003F);
|
|
assert_eq!(encode(fsn), 0xFFFC0000003F);
|
|
}
|
|
|
|
#[test]
|
|
fn partial_saturate() {
|
|
let fs = (99_999_999_999_999.0, 4294967296.0, -17179869184.0);
|
|
let fsn = (-99_999_999_999_999.0, 4294967296.0, -17179869184.0);
|
|
|
|
assert_eq!(round_trip(fs), (MAX, 4294967296.0, -17179869184.0));
|
|
assert_eq!(round_trip(fsn), (MIN, 4294967296.0, -17179869184.0));
|
|
}
|
|
|
|
#[test]
|
|
fn smallest_value() {
|
|
let fs = (MIN_POSITIVE, MIN_POSITIVE * 0.5, MIN_POSITIVE * 0.49);
|
|
let fsn = (-MIN_POSITIVE, -MIN_POSITIVE * 0.5, -MIN_POSITIVE * 0.49);
|
|
|
|
assert_eq!(decode(0x600100000), (MIN_POSITIVE, -MIN_POSITIVE, 0.0));
|
|
assert_eq!(round_trip(fs), (MIN_POSITIVE, MIN_POSITIVE, 0.0));
|
|
assert_eq!(round_trip(fsn), (-MIN_POSITIVE, -MIN_POSITIVE, -0.0));
|
|
}
|
|
|
|
#[test]
|
|
fn underflow() {
|
|
let fs = (MIN_POSITIVE * 0.49, -MIN_POSITIVE * 0.49, 0.0);
|
|
assert_eq!(encode(fs), 0x200000000);
|
|
assert_eq!(round_trip(fs), (0.0, -0.0, 0.0));
|
|
}
|
|
|
|
#[test]
|
|
fn garbage_upper_bits_decode() {
|
|
let fs1 = (4.0, -623.53, 12.3);
|
|
let fs2 = (-63456254.2, 5235423.53, 54353.3);
|
|
let fs3 = (-0.000000634, 0.00000000005, 0.00000000892);
|
|
|
|
let n1 = encode(fs1);
|
|
let n2 = encode(fs2);
|
|
let n3 = encode(fs3);
|
|
|
|
assert_eq!(decode(n1), decode(n1 | 0xffff_0000_0000_0000));
|
|
assert_eq!(decode(n2), decode(n2 | 0xffff_0000_0000_0000));
|
|
assert_eq!(decode(n3), decode(n3 | 0xffff_0000_0000_0000));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn nans_01() {
|
|
encode((std::f32::NAN, 1.0, -1.0));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn nans_02() {
|
|
encode((1.0, std::f32::NAN, -1.0));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn nans_03() {
|
|
encode((1.0, -1.0, std::f32::NAN));
|
|
}
|
|
}
|