psychopath/sub_crates/math3d/src/vector.rs

325 lines
6.8 KiB
Rust

#![allow(dead_code)]
use std::cmp::PartialEq;
use std::ops::{Add, Div, Mul, Neg, Sub};
use float4::Float4;
use super::{CrossProduct, DotProduct};
use super::{Matrix4x4, Normal, Point};
/// A direction vector in 3d homogeneous space.
#[derive(Debug, Copy, Clone)]
pub struct Vector {
pub co: Float4,
}
impl Vector {
#[inline(always)]
pub fn new(x: f32, y: f32, z: f32) -> Vector {
Vector {
co: Float4::new(x, y, z, 0.0),
}
}
#[inline(always)]
pub fn length(&self) -> f32 {
(self.co * self.co).h_sum().sqrt()
}
#[inline(always)]
pub fn length2(&self) -> f32 {
(self.co * self.co).h_sum()
}
#[inline(always)]
pub fn normalized(&self) -> Vector {
*self / self.length()
}
#[inline(always)]
pub fn abs(&self) -> Vector {
Vector::new(self.x().abs(), self.y().abs(), self.z().abs())
}
#[inline(always)]
pub fn into_point(self) -> Point {
Point::new(self.x(), self.y(), self.z())
}
#[inline(always)]
pub fn into_normal(self) -> Normal {
Normal::new(self.x(), self.y(), self.z())
}
#[inline(always)]
pub fn get_n(&self, n: usize) -> f32 {
match n {
0 => self.x(),
1 => self.y(),
2 => self.z(),
_ => panic!("Attempt to access dimension beyond z."),
}
}
#[inline(always)]
pub fn x(&self) -> f32 {
self.co.get_0()
}
#[inline(always)]
pub fn y(&self) -> f32 {
self.co.get_1()
}
#[inline(always)]
pub fn z(&self) -> f32 {
self.co.get_2()
}
#[inline(always)]
pub fn set_x(&mut self, x: f32) {
self.co.set_0(x);
}
#[inline(always)]
pub fn set_y(&mut self, y: f32) {
self.co.set_1(y);
}
#[inline(always)]
pub fn set_z(&mut self, z: f32) {
self.co.set_2(z);
}
}
impl PartialEq for Vector {
#[inline(always)]
fn eq(&self, other: &Vector) -> bool {
self.co == other.co
}
}
impl Add for Vector {
type Output = Vector;
#[inline(always)]
fn add(self, other: Vector) -> Vector {
Vector {
co: self.co + other.co,
}
}
}
impl Sub for Vector {
type Output = Vector;
#[inline(always)]
fn sub(self, other: Vector) -> Vector {
Vector {
co: self.co - other.co,
}
}
}
impl Mul<f32> for Vector {
type Output = Vector;
#[inline(always)]
fn mul(self, other: f32) -> Vector {
Vector {
co: self.co * other,
}
}
}
impl Mul<Matrix4x4> for Vector {
type Output = Vector;
#[inline]
fn mul(self, other: Matrix4x4) -> Vector {
Vector {
co: Float4::new(
(self.co * other.values[0]).h_sum(),
(self.co * other.values[1]).h_sum(),
(self.co * other.values[2]).h_sum(),
(self.co * other.values[3]).h_sum(),
),
}
}
}
impl Div<f32> for Vector {
type Output = Vector;
#[inline(always)]
fn div(self, other: f32) -> Vector {
Vector {
co: self.co / other,
}
}
}
impl Neg for Vector {
type Output = Vector;
#[inline(always)]
fn neg(self) -> Vector {
Vector { co: self.co * -1.0 }
}
}
impl DotProduct for Vector {
#[inline(always)]
fn dot(self, other: Vector) -> f32 {
(self.co * other.co).h_sum()
}
}
impl CrossProduct for Vector {
#[inline]
fn cross(self, other: Vector) -> Vector {
Vector {
co: Float4::new(
(self.co.get_1() * other.co.get_2()) - (self.co.get_2() * other.co.get_1()),
(self.co.get_2() * other.co.get_0()) - (self.co.get_0() * other.co.get_2()),
(self.co.get_0() * other.co.get_1()) - (self.co.get_1() * other.co.get_0()),
0.0,
),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::{CrossProduct, DotProduct, Matrix4x4};
#[test]
fn add() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = Vector::new(1.5, 4.5, 2.5);
let v3 = Vector::new(2.5, 6.5, 5.5);
assert_eq!(v3, v1 + v2);
}
#[test]
fn sub() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = Vector::new(1.5, 4.5, 2.5);
let v3 = Vector::new(-0.5, -2.5, 0.5);
assert_eq!(v3, v1 - v2);
}
#[test]
fn mul_scalar() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = 2.0;
let v3 = Vector::new(2.0, 4.0, 6.0);
assert_eq!(v3, v1 * v2);
}
#[test]
fn mul_matrix_1() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
13.0,
7.0,
15.0,
3.0,
);
let mut vm = Vector::new(14.0, 46.0, 58.0);
vm.co.set_3(90.5);
assert_eq!(v * m, vm);
}
#[test]
fn mul_matrix_2() {
let v = Vector::new(1.0, 2.5, 4.0);
let m = Matrix4x4::new_from_values(
1.0,
2.0,
2.0,
1.5,
3.0,
6.0,
7.0,
8.0,
9.0,
2.0,
11.0,
12.0,
0.0,
0.0,
0.0,
1.0,
);
let vm = Vector::new(14.0, 46.0, 58.0);
assert_eq!(v * m, vm);
}
#[test]
fn div() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = 2.0;
let v3 = Vector::new(0.5, 1.0, 1.5);
assert_eq!(v3, v1 / v2);
}
#[test]
fn length() {
let v = Vector::new(1.0, 2.0, 3.0);
assert!((v.length() - 3.7416573867739413).abs() < 0.000001);
}
#[test]
fn length2() {
let v = Vector::new(1.0, 2.0, 3.0);
assert_eq!(v.length2(), 14.0);
}
#[test]
fn normalized() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = Vector::new(0.2672612419124244, 0.5345224838248488, 0.8017837257372732);
let v3 = v1.normalized();
assert!((v3.x() - v2.x()).abs() < 0.000001);
assert!((v3.y() - v2.y()).abs() < 0.000001);
assert!((v3.z() - v2.z()).abs() < 0.000001);
}
#[test]
fn dot_test() {
let v1 = Vector::new(1.0, 2.0, 3.0);
let v2 = Vector::new(1.5, 4.5, 2.5);
let v3 = 18.0f32;
assert_eq!(v3, v1.dot(v2));
}
#[test]
fn cross_test() {
let v1 = Vector::new(1.0, 0.0, 0.0);
let v2 = Vector::new(0.0, 1.0, 0.0);
let v3 = Vector::new(0.0, 0.0, 1.0);
assert_eq!(v3, v1.cross(v2));
}
}